K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

B A C D E F G

Dựng hình vuông ABFC. Qua B kẻ đường thẳng vuông góc với BE cắt đường thẳng CF tại G.

Xét tam giác BFG và tam giác BAD có: BF = BA;  FBG=ABD (vì cùng phụ vói góc DBF)

Suy ra hai tam giác này bằng nhau. Suy ra BD=BG.

Trong tam giác BEG vuông tại B có đường cao BF

 nên theo hệ thức lượng ta có: \(\frac{1}{BD^2}+\frac{1}{BE^2}=\frac{1}{BG^2}+\frac{1}{BE^2}=\frac{1}{BF^2}=\frac{1}{AC^2}\) không đổi.

1 tháng 9 2017
khong biet
8 tháng 1 2018

Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

24 tháng 9 2016

B F D A E C

Xét tứ giác AFDE có 3 góc vuông nên là HCN ( theo dấu hiệu nhận biết của HCN ) 

\(\Rightarrow DF=AE\)

\(\Rightarrow DF+DE=AE+DE\)

Xét \(\Delta DEC\) vuông tại E có \(\widehat{C}=45^0\) nên vuông cân tại E .

\(\Rightarrow DE=CE\)

\(\Rightarrow DF+DE=AE+CE=AC\)

Mà AC cố định 

\(\Rightarrow DF+DE\) không thay đổi 

Vậy .........

24 tháng 9 2016

@Đặng Duy Phương

3 tháng 9 2016

A B C D E F

Xét tứ giác \(AFDE\)có 3 góc vuông nên là hình chữ nhật ( Theo dấu hiệu nhận biết hình chữ nhật )

\(\Rightarrow DF=AE\)

\(\Rightarrow DF+DE=AE+DE\)

Xét \(\Delta DEC\)vuông tại E có góc \(C=45^o\)nên vuông cân tại E

\(\Rightarrow DE=CE\)

\(\Rightarrow DF+DE=AE+CE=AC\)

Mà \(AC\)cố đinh

\(\Rightarrow DF+DE\)không thay đổi

Vậy ...

4 tháng 3 2022

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

5 tháng 3 2022

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.