Cho tam giác ABC vuông cân tại A,điểm D di chuyển trên cạnh AC,đường thẳng d vuông góc với AC tại C cắt đường thẳng BD tại E.CM:khi D di chuyển trên AC thì tổng \(\frac{1}{BD^2}+\frac{1}{BE^2}\)không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Xét tứ giác AFDE có 3 góc vuông nên là HCN ( theo dấu hiệu nhận biết của HCN )
\(\Rightarrow DF=AE\)
\(\Rightarrow DF+DE=AE+DE\)
Xét \(\Delta DEC\) vuông tại E có \(\widehat{C}=45^0\) nên vuông cân tại E .
\(\Rightarrow DE=CE\)
\(\Rightarrow DF+DE=AE+CE=AC\)
Mà AC cố định
\(\Rightarrow DF+DE\) không thay đổi
Vậy .........
Xét tứ giác \(AFDE\)có 3 góc vuông nên là hình chữ nhật ( Theo dấu hiệu nhận biết hình chữ nhật )
\(\Rightarrow DF=AE\)
\(\Rightarrow DF+DE=AE+DE\)
Xét \(\Delta DEC\)vuông tại E có góc \(C=45^o\)nên vuông cân tại E
\(\Rightarrow DE=CE\)
\(\Rightarrow DF+DE=AE+CE=AC\)
Mà \(AC\)cố đinh
\(\Rightarrow DF+DE\)không thay đổi
Vậy ...
-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042
c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.
-Xét △ABF và △ACF:
\(AB=AC\) (△ABC cân tại A).
\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))
AF là cạnh chung.
\(\Rightarrow\)△ABF=△ACF (c-g-c).
\(\Rightarrow BF=CF\) (2 cạnh tương ứng).
\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).
-Xét △MIF và △NIF:
\(MI=IN\left(cmt\right)\)
\(\widehat{MIF}=\widehat{NIF}=90^0\)
IF là cạnh chung.
\(\Rightarrow\)△MIF=△NIF (c-g-c).
\(\Rightarrow MF=NF\) (2 cạnh tương ứng).
-Xét △BMF và △CNF:
\(BM=NC\)(△MBD=△NCE)
\(MF=NF\left(cmt\right)\)
\(BF=CF\left(cmt\right)\)
\(\Rightarrow\)△BMF=△CNF (c-c-c).
\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).
Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)
Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\)AB⊥BF tại B.
\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).
\(\Rightarrow\)F cố định.
-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.
Dựng hình vuông ABFC. Qua B kẻ đường thẳng vuông góc với BE cắt đường thẳng CF tại G.
Xét tam giác BFG và tam giác BAD có: BF = BA; FBG=ABD (vì cùng phụ vói góc DBF)
Suy ra hai tam giác này bằng nhau. Suy ra BD=BG.
Trong tam giác BEG vuông tại B có đường cao BF
nên theo hệ thức lượng ta có: \(\frac{1}{BD^2}+\frac{1}{BE^2}=\frac{1}{BG^2}+\frac{1}{BE^2}=\frac{1}{BF^2}=\frac{1}{AC^2}\) không đổi.