Xác định a và b để đa thức $2 x^3-x^2+a x+b$ chia hết cho đa thức $x^2-1$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$
Giao luu vấn đề mới
x=1, -2 là nghiệm
\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)
Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Đa thức \(2x^3-x^2+ax+b\)(*) chia hết cho \(x^2-1\) nên hai đa thức này có cùng nghiệm:
Ta có: \(x^2-1=0\Leftrightarrow x=\pm1\)
+) Do `x=1` là nghiệm nên thay \(x=1\) vào (*) thì (*) sẽ bằng 0 ta có:
\(2\cdot1^3-1^2+a\cdot1+b=0\)
\(\Leftrightarrow2-1+a+b=0\)
\(\Leftrightarrow a+b=-1\Leftrightarrow a=-1-b\) (1)
+) Do \(x=-1\) là nghiệm nên thay \(x=-1\) vào (*) thì (*) sẽ bằng 0 ta có:
\(2\cdot\left(-1\right)^3-\left(-1\right)^2+a\cdot\left(-1\right)+b=0\)
\(\Leftrightarrow-2-1-a+b=0\)
\(\Leftrightarrow b-a=3\) (2)
Thay (1) vào (2) ta có:
\(b-a=3\Leftrightarrow b-\left(-1-b\right)=3\)
\(\Leftrightarrow b+1+b=3\)
\(\Leftrightarrow2b=2\)
\(\Leftrightarrow b=1\)
\(\Rightarrow a=-1-1=-2\)
Vậy: ...