K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2

 Trước khi xem lời giải của mình thì bạn chú ý là trong đó có sử dụng những kí hiệu, thuật ngữ và tính chất khá khó hiểu với học sinh cấp II (thậm chí một vài bạn cấp III cũng chưa chắc đã hiểu thấu). Vì vậy nếu có gì khúc mắc trong lời giải thì bạn cứ nhắn tin riêng cho mình nhé. 

 

 Trước hết ta đến với các định nghĩa sau:

 Định nghĩa 1: Với điểm X nằm ngoài đường tròn (I), kí hiệu \(d_X\) là đường thẳng nối 2 tiếp điểm của 2 tiếp tuyến qua X ứng với (I).

 Định nghĩa 2: Còn với điểm (I) nằm trong đường tròn, nếu lấy điểm Y trên tia IX mà \(IY.IX=R^2\) thì dX lại là đường thẳng qua Y và vuông góc với IX.

 

 

 Định nghĩa 3: Bốn điểm A, B, C, D theo thứ tự nằm trên 1 đường thẳng mà thỏa mãn \(\dfrac{AB}{AD}=\dfrac{CB}{CD}\) thì ta kí hiệu \(\left(BDCA\right)=-1\) và nếu lấy một điểm O bất kì nằm ngoài đường thẳng đó thì ta kí hiệu \(O\left(BDCA\right)=\left(OB,OD,OC,OA\right)=-1\)

 Sau đây là một số tính chất: 

 Tính chất 1: \(d_X\perp IX\), hiển nhiên.

 Tính chất 2: \(Y\in d_X\Leftrightarrow X\in d_Y\) , cũng quá hiển nhiên.

 Tính chất 3: Từ một điểm X nằm ngoài I, vẽ cát tuyến XUV với U, V thuộc (I). Khi đó một điểm Y bất kì thuộc cát tuyến này mà thỏa mãn \(\left(UVYX\right)=-1\) \(\Leftrightarrow Y\in d_X\)

 

 Tính chất 4: Cho 4 điểm A, B, C, D theo thứ tự nằm trên đường thẳng d thỏa mãn \(\left(BDCA\right)=-1\) và 1 điểm O nằm ngoài d. Khi đó nếu vẽ 1 đường thẳng d' khác d cắt OA, OB, OC, OD lần lượt tại A', B', C', D' thì \(\left(B'D'C'A'\right)=-1\)

 

 Tính chất 5: Cho 4 điểm A, B, C, D nằm trên d và một điểm O nằm ngoài d. Khi đó kẻ một đường thẳng song song với một đường bất kì trong số OA, OB, OC, OD và cắt 3 đường còn lại tại M, N, P (N nằm giữa M và P). Khi đó M là trung điểm của NP \(\Leftrightarrow\left(BDCA\right)=-1\)

 

 Quay trở lại bài toán chính.

 

 Gọi M là trung điểm BC, K' là giao điểm của AM và EF. Qua A kẻ đường thẳng song song với BC cắt EF tại T.

 Ta sẽ chứng minh \(K'\equiv K\) hay D, E, K' thẳng hàng.

 Thật vậy, vì AT//BC và M là trung điểm BC nên theo tính chất 5\(\left(AB,AC,AM,AT\right)=-1\). Áp dụng tính chất 4, ta được \(\left(EFK'T\right)=-1\), điều này có nghĩa là \(T\in d_{K'}\) do tính chất 3.

 Hơn nữa, \(K'\in EF\equiv d_A\) nên \(A\in d_{K'}\) (tính chất 2). Do đó \(AT\equiv d_{K'}\) dẫn đến \(IK'\perp AT\) (tính chất 1).

 Do AT//BC nên \(IK'\perp BC\). Mà \(ID\perp BC\) nên D, I, K' thẳng hàng hay \(K'\equiv K\). Ta có đpcm. 

 

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

30 tháng 3 2022
Ai giúp em với😢
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0