Cho △ABC vuông tại A,trên cạnh BC lấy điểm D sao cho BA=BD.Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E
A,c/m △abk= △DBE
B, so sánh AE và EC
C,c/m BE là trung trực của đoạn thẳng AD
D, gọi F là giao điểm của DE và BA,c/m △EFC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=4cm
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
Suy ra: \(\widehat{ABE}=\widehat{DBE}\)
hay BE là tia phân giác của góc ABC
c: Ta có: ΔBAE=ΔBDE
nên EA=ED
mà ED<EC
nên EA<EC
d: Ta có: BA=BD
nên B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
nên E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )
\(\Rightarrow3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )
b ) Xét 2 \(\Delta\)vuông ABE và DBE có :
\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)
\(AB=DB\left(gt\right)\)
BE : cạnh chung
Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)
Hay BE là tia phân giác của \(\widehat{ABC}\)
c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)
\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )
+ Xét \(\Delta DEC\)vuông tại D (gt) có :
Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )
\(\Rightarrow EC>DE\)
Mà \(DE=AE\left(cmt\right)\)
\(\Rightarrow EC>AE\)
Hay \(AE< EC\)
d ) Vì \(AB=DB\left(gt\right)\)
\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)
+ Vì \(AE=DE\left(cmt\right)\)
\(\Rightarrow E\)thuộc đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)
Chúc bạn học tốt !!!
a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
Hay \(AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
b) Xét \(\Delta ABE\)và \(\Delta DBE\)có:
\(\widehat{BAE}=\widehat{BDE}=90^o\)
\(BA=BD\left(gt\right)\)
\(BE\)là cạnh chung
Do đó \(\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)(2 góc tương ứng)
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABC}\)
a) Áp dụng pytago .
b) Xét t/g ABE; tg DBE:
AB = DB ( gt)
g ABE = DBE (suy từ gt)
BE chung
=> tg ABE = tg DBE (c.g.c)
c) Vì tg ABE = tg DBE (câu b)
=> AE = DE
Xét tg AEF ⊥⊥ tại A; tg DEC ⊥⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn)
=> EF = EC
d) Do tg AEF = tg DEC (câu c)
=> AE = DE
=> E ∈∈ đg trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đg trung trực của AD (2)
Từ (1) và (2) => BE là đg trung trực của AD.
hình tự vẽ:
xét hai tam giác vuông ABE và DBE:
ab=ad(gt); be là cạnh huyền chung
=>\(\Delta\) ABE = \(\Delta\)DBE
mình sẽ giải tiếp
a) theo đinh j lý pitago : tam giác abc vuông tại A
=> \(AB^2+AC^2=BC^2\)THAY SỐ TA ĐƯỢC \(5^2+7^2=BC^2\) TA ĐƯỢC \(74=BC^2\) =>BC =
8.6023
a) Vì tam giác BAC vuông tại A
=> AB^2 + AC^2 = BC^2 ( đl pytago )
=> BC^2 = 5^2 + 7^2 = 74
=> BC = căn bậc 2 của 74
b)
Xét tam giác ABE; tam giác DBE có :
AB = DB ( gt)
góc ABE = góc DBE ( gt)
BE chung
=> tam giác ABE = tam giác DBE (c.g.c) - đpcm
c)
Vì tam giác ABE = tam giác DBE (câu b)
=> AE = DE
Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn) - đpcm
=> EF = EC
d)
Do tam giác AEF = tam giác DEC (câu c)
=> AE = DE
=> E ∈ đường trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD. - đpcm
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
⇒ΔECA=ΔEDA(Cạnh huyền, cạnh góc vuông)
⇒ˆCAE=ˆDAE (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, ΔECA=ΔEDA⇒EC=ED
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.
a) Sửa đề: Chứng minh ∆ABE = ∆DBE
Xét hai tam giác vuông: ∆ABE và ∆DBE có:
BE là cạnh chung
BA = BD (gt)
⇒ ∆ABE = ∆DBE (cạnh huyền - góc nhọn)
b) Do ∆ABE = ∆DBE (cmt)
⇒ AE = DE (hai cạnh tương ứng)
∆CDE vuông tại D
EC là cạnh huyền nên là cạnh lớn nhất
⇒ DE < EC
Mà AE = DE (cmt)
⇒ AE < EC
c) Gọi G là giao điểm của AD và BE
Do ∆ABE = ∆DBE (cmt)
⇒ ∠ABE = ∠DBE (hai góc tương ứng)
⇒ ∠ABG = ∠DBG
Xét ∆ABG và ∆DBG có:
BA = BD (gt)
∠ABG = ∠DBG (cmt)
BG là cạnh chung
⇒ ∆ABG = ∆DBG (c-g-c)
⇒ ∠AGB = ∠DGB (hai góc tương ứng)
Mà ∠AGB + ∠DGB = 180⁰ (kề bù)
⇒ ∠AGB = ∠DGB = 180⁰ : 2 = 90⁰
⇒ BG ⊥ AD (1)
Do ∆ABG = ∆DBG (cmt)
⇒ AG = DG (hai cạnh tương ứng)
⇒ G là trung điểm của AD (2)
Từ (1) và (2) ⇒ BG là đường trung trực của AD
⇒ BE là đường trung trực của AD
d) Xét hai tam giác vuông: ∆EDC và ∆EAF có:
DE = AE (cmt)
∠DEC = ∠AEF (đối đỉnh)
⇒ ∆EDC = ∆EAF (cạnh góc vuông - góc nhọn kề)
⇒ EC = EF (hai cạnh tương ứng)
∆EFC có:
EC = EF (cmt)
⇒ ∆EFC cân tại E