√x + 2√y = 10. Chứng minh x+y >= 20
Mọi ng giúp tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Có : \(2x^2+3x+2\)
\(\Leftrightarrow\) \(\left(x^2+2x+1^2\right)+\left(x^2+x+1^2\right)\)
\(\Leftrightarrow\) \(\left(x^2+2.x.1+1^2\right)\) + \(\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+1\right)^2\ge0và\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(2x^2+3x+2>0\left(\forall_x\right)\)
a)
\(2x^2+3x+2=\left(x^2+2x+1\right)+\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
(vì >3/4 nên >0)
\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1+\frac{2}{xy}\)
<=> \(1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}=1+\frac{2}{xy}\)
<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}-\frac{1}{x^2y^2}=0\)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{1}{x^2y^2}=0\)
<=> \(\left(\frac{x+y}{xy}\right)^2-\frac{1}{x^2y^2}=0\)
<=> \(\frac{1}{x^2y^2}-\frac{1}{x^2y^2}=0\) luôn đúng
=> đpcm
A = ( x + y )( x + 2y )( x + 3y )( x + 4y ) + y4
= [ ( x + y )( x + 4y ) ][ ( x + 2y )( x + 3y ) ] + y4
= ( x2 + 5xy + 4y2 )( x2 + 5xy + 6y2 ) + y4 (1)
Đặt t = x2 + 5xy + 5y2
(1) <=> ( t - y2 )( t + y2 ) + y4
= t2 - y4 + y4
= t2 = ( x2 + 5xy + 5y2 )2
Vì x, y nguyên => x2 nguyên ; 5xy nguyên ; 5y2 nguyên
=> x2 + 5xy + 5y2 nguyên
=> ( x2 + 5xy + 5y2 )2 là một số chính phương
=> đpcm
A = ( x + y )( x + 2y )( x + 3y )( x + 4y ) + y4
=> A = ( x2 + 5xy + 4y2 ) ( x2 + 5xy + 6y2 ) + y4
Đặt a = x2 + 5xy + 5y2 , pt trở thành :
A = ( a - y2 ) ( a + y2 ) + y4
=> A = t2 - y4 + y4 = t2 = ( x2 + 5xy + 5y2 )2 là SCP
Vậy A là SCP
a) VT = x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3
= 2x3 + 6xy2
= 2x( x2 + 3y2 ) = VP
=> đpcm
b) VT = x3 + 3x2y + 3xy2 + y3 - ( x3 - 3x2y + 3xy2 - y3 )
= x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3
= 3x2y + 2y3
= 2y( 3x2 + y2 ) = VP
=> đpcm
a)
\(VT=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\left[x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right]\)
\(=2x\left(x^2+3y^2\right)=VP\)
b)
\(VT=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)=VP\)
Áp dụng bđt BCS, ta có:
\(100=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\Rightarrow x+y\ge20.\)