chứng minh a(b+c)+d(b+c)=(a+d)(b+c) làm đầu tiên mk tick đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng ............... ta có :
\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}=K\)
\(\frac{a-b}{c-d}=\frac{a}{c}=\frac{b}{d}=K\)
\(DoK=K\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đúng )
a) a(b + c) - b(a - c)
= ab + ac - ba + bc
= ac + bc
= (a + b)c
b) sorry bạn mình chưa học phần này
a) a ( b + c ) - b ( a - c ) = ab + ac - ab - bc
= [ ab + ( -ab ) ] [ ac + bc ]
= ac + bc
= c ( a + b )
b) Tương tự
a) a/b=ad/bd
c/d=cb/db
mà a/b<c/d=>ad/bd<cb/bd=>ad<bc
b)ad<bc=>ad/bd<bc/bd=> a/b<c/d
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
đpcm
Tham khảo nhé~
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
cho a/b = c/d . chứng minh rằng (a-b/c-d)^2 = a*b/c*d
ai giải được mình cho * . người đầu tiên nha
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{a}{c}.\frac{b}{d}\)
=> \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
=> Đpcm
Có: A+B = a + b - 5 - b - c + 1 = a - c - 4
C - D = b - c - 4 - b + a = a - c - 4
=> A + B = C - C ( = a - c -4)
A + B = a + b - 5 + ( - b - c + 1)= a + b - 5 - b - c + 1 = a - c - 4 (1)
C - D = b - c - 4 - (b - a) = b - c - 4 - b + a = - c - 4 + a = a - c - 4 (2)
(1) và (2) => A + B = C - D
Áp dụng : a.b + a.c = a.( b + c )
=> a.( b + c ) + d.( b + c ) = ( a + d ) ( b + c )
Ta có VT : a ( b+c) + d ( b + c )
= ab + ac + bd + dc (1)
Lại có Vp
(a+d)(b+c) = ab + ac + bd + dc (2)
Từ 1 và 2 => a(b+c)+d(b+c) = (a+d)(b+c)