K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

A=1/3.7+1/7.11+1/11.15+...+1/91.95

=>4A=4/3.7+4/7.11+4/11.15+...+4/91.95

    4A=1/3-1/7+1/7-1/11+1/11-1/15+...1/91-1/95

    4A=1/3-1/95

    4A=92/285

      A=92/285:4

      A=23/285

29 tháng 8 2017

Thank

24 tháng 3 2019

đề có sai sót chỗ nào không bạn

25 tháng 7 2019

Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha

Mình lười lắm nên chỉ help 1 phần thui nha sr

25 tháng 7 2019

giúp đi mà

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

31 tháng 3 2017

a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

       \(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)

       \(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)

       \(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)

       \(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)

b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)

      \(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

      \(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

       \(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)

       \(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)

1 tháng 4 2017

mình cũng làm như trên

29 tháng 6 2017

a) \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)

\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{19}-\frac{1}{19}+\frac{1}{23}-\frac{1}{23}+\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)

\(=\frac{1}{2}-\frac{2}{27}\)

\(=\frac{23}{54}\)

b) \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)

\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+\frac{1}{20}-...-\frac{1}{95}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}.\frac{19}{100}\)

\(=1-\frac{19}{500}\)

\(=\frac{481}{500}\)

26 tháng 4 2017

E=\(\frac{5}{1.2}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

E.\(\frac{1}{7}\)=\(\frac{5}{1.2.7}+\frac{4}{1.11.7}+\frac{3}{11.2.7}+\frac{1}{2.15.7}+\frac{13}{15.4.7}\)

E.\(\frac{1}{7}\)=\(\frac{5}{7.2}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

E.\(\frac{1}{7}\)=\(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)

E.\(\frac{1}{7}\)=\(\frac{1}{2}-\frac{1}{28}\)

E.\(\frac{1}{7}=\frac{13}{28}\)

E=\(\frac{13}{28}:\frac{1}{7}=\frac{13}{4}\)

26 tháng 4 2017

\(E=\frac{5}{1.2}+\frac{1}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

\(E=\frac{5}{2}+\frac{1}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\)

\(E=\frac{5}{2}+\left(\frac{1}{11}+\frac{3}{22}\right)+\left(\frac{1}{30}+\frac{13}{60}\right)\)

\(E=\frac{5}{2}+\left(\frac{2}{22}+\frac{3}{22}\right)+\left(\frac{2}{60}+\frac{13}{60}\right)\)

\(E=\frac{5}{2}+\frac{5}{22}+\frac{15}{60}\)

\(E=\frac{55}{22}+\frac{5}{22}+\frac{1}{4}\)

\(E=\frac{60}{22}+\frac{1}{4}\)

\(E=\frac{30}{11}+\frac{1}{4}\)

\(E=\frac{120}{44}+\frac{11}{44}\)\(=\frac{131}{44}\)

k mình nha chúc bạn học giỏi

26 tháng 9 2020

\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)

\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)

\(=\frac{99.5}{486}\)

\(=\frac{495}{486}\)

26 tháng 9 2020

Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)

\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)

\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)

\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)

\(A=66.\frac{13}{27}\)

\(A=\frac{286}{9}\)

sai hay đúng cx ko biết nha

27 tháng 5 2016

Số số hạng của dãy trên là: [(103 - 1) : 2 + 1] : 2 = 26 số

Tích nh mấy bạn trong nhóm VRCT

27 tháng 5 2016

26 số nha