Cho tam giác ABC có góc A bằng 90 độ. AH vuông góc với BC. Phân giác BD cắt AH tại I.
a) Chứng minh tam giác AID cân
b) AD.BD=BI.DC
c) Kẻ DK vuông góc với BC. Tứ giác AKDI là hình gì? Chứng minh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét Δ ABE và Δ KBE có:
^B1=^B2(BD là tia p/g)
^BEA=^KEB=90o
AE chung
=> ΔABE=ΔKBE(g.c.g)
=>AB=KB
=>ΔABK cân tại B
(xin lỗi mình ko biết phần b,c,d) ;-;
cho bạn cái hình nè :
a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.
b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.
Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:
$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$
$$\Rightarrow AB = EB$$
Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:
$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$
Do đó, $AH = ED$, hay $AH$ song song với $DE$.
Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:
$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$
Mà $\angle ABC = 90^\circ + \angle BAC$, nên:
$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$
Tương tự, ta có:
$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$
Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.
Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.
Xem lại KHỐI LỚP và cách áp dụng KIẾN THỨC như thế nào cho đúng với lứa tuổi.
các bạn ơi giúp mình phần c với vì mik sắp phải nộp bài rồi .cảm ơn các bạn rất nhiều.
a,
Xét \(\Delta AIB\)và \(CDB\)có :
\(+,\widehat{ABI}=\widehat{DBC}\)( Do \(BD\)là phân giác )
\(+,\widehat{BAI}=\widehat{BCD}\)( cùng phụ \(\widehat{ABC}\))
Vậy tam giác \(AIB~CDB\left(g.g\right)\)
Suy ra : \(\frac{CD}{BC}=\frac{AI}{AB}\)
Mà theo tính chất phân giác \(\frac{CD}{BC}=\frac{AD}{AB}\Rightarrow AD=AI\)hay \(AID\)cân tại \(A\)
b,
Tam giác \(ABI~CBD\)
Suy ra : \(\frac{BI}{BD}=\frac{AI}{CD}=\frac{AD}{CD}\)
\(\Rightarrow BI.CD=AD.BD\)
c,
Dễ dàng chứng minh tam giác \(ADB=KDB\Rightarrow AD=DK\Rightarrow AI=DK\)
Lại có AI // DK ( cùng vuông góc BC )
Vậy \(AIKB\)là hình bình hành do 2 cạnh đối song song và bằng nhau.
Lại có \(AI=AD\)nên \(AIKB\)là hình thoi.