Chứng minh rằng nếu trung tuyến AM của tam giác ABC bé hơn nửa đọ dài cạnh BC thì góc A phải là góc tù.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
AM là đường trung tuyến
AM là đường cao
Do đó: ΔABC cân tại A
Vì AM là đường trung tuyến của ΔABC nên BM = MC = 1/2 BC
Mà AM = 1/2 BC (gt) nên: AM = BM = MC.
Tam giác AMB có AM = MB nên ΔAMB cân tại M
Suy ra: ∠B = ∠A1 (tính chất tam giác cân) (1)
Tam giác AMC có AM = MC nên ΔAMC cân tại M
Suy ra: ∠C = ∠A2 (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠B + ∠C = ∠A1 + ∠A2 = ∠(BAC) (3)
Trong ΔABC ta có:
∠B + ∠C + ∠(BAC) = 180o (tổng ba góc trong tam giác) (4)
Từ (3) và (4) suy ra: ∠(BAC) + ∠(BAC) = 180o ⇔ 2∠(BAC) = 180o
Hay ∠(BAC) = 90o.
Vậy ΔABC vuông tại A.
1/Giả sử trong 1 tam giác có 2 hóc tù thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=>trong 1 tam giác chỉ có duy nhất 1 góc tù
2/Trong 1 tam giác nếu góc nhỏ nhất bằng 60 độ thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=> trong một tam giác góc nhỏ nhất không thể lớn hơn 60 độ
3/Xét tam giác AMB = tam giác AMC (c.c.c)
=> góc BMA = góc CMA
Mặt khác góc BMA + góc CMA = 180 độ
=> góc BMA = góc CMA = 90 độ
=> AM vuông góc BC
=> AM là đường cao của tam giác hạ từ đỉnh A
Tam giác BMA = tam giác CMA
=> góc BAM = góc CAM
=> AM là tia phân giác của góc A
ta có AM=1/2BC,mà BM=CM=1/2BC
=> AM=BM=CM
ta có BM=AM=> tam giác AMB cân tại M=> góc A1= góc B
ta có AM=MC=>tam giác AMC cân tại M=> góc A2=góc C
tam giác ABC có góc B+A1+A2+C=180 độ
=> A1+A1+A2+A2=180 độ
=> 2(A1+A2)=180 độ
=> A1+A2=90độ
vậy góc BAC=90 độ
giải: vò MA = MB (gt)
=> tam giác AMB cân tại M
=> góc B = góc A1 ( đ/lý) (1)
MA = MC (gt)
=> tam giác AMC cân tại M
=> góc C = góc A2 (đ/lý) (2)
trong tam giác ABC có: góc A + góc B + góc C = 1800 (đ/lý)
hay góc A1 + A2 + góc B + góc C = 1800 (3)
từ (1), (2) , (3) => 2 góc A1 + 2 góc A2 = 1800
2 ( góc A1 + góc A2) = 1800
góc A1 + góc A2 = 900
hay góc BAC = 900