K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

sai de thi phai

13 tháng 10 2020

ĐK:\(a+b+c\le1|a,b,c>0\)

Chỉ có TH \(a=b=c=\frac{1}{3}\)\(\Rightarrow TH:a+b+c=1\)

\(\Rightarrow\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2+2\left(\frac{1}{3}\right)^2}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2\left(2+1\right)}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2.3}3\ge9\)\(=\frac{1}{\frac{1}{3}.\frac{1}{3}.3}3\ge9\)\(=\frac{1}{\frac{1}{3}}3\ge9\)\(=\frac{3}{\frac{1}{3}}\ge9\)\(=3:1:3\ge9\)\(=1\ge9\)( loại )

Vậy không thể CMR \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ba}\ge9\).

13 tháng 10 2020

Hay thoi chứ để là \(a+b+c\le1\) đy, vì thấy ai cũng bảo đề sai nên sửa đề là vậy đi ạ '-'. Còn nếu pro nào là làm được cái đề gốc kia thì xin giải hộ em ạ T.T

13 tháng 10 2020

Thầy tao làm như nào tao chép lại y nguyên nhá :) 

Dự đoán điểm rơi a = b = c = 1/3

Áp dụng bất đẳng thức Cô si :

\(\frac{1}{a^2+2bc}+9\left(a^2+2bc\right)\ge2\sqrt{\frac{1}{a^2+2bc}\cdot9\left(a^2+2bc\right)}=6\)

TT : \(\frac{1}{b^2+2ac}+9\left(b^2+2ac\right)\ge2\sqrt{\frac{1}{b^2+2ac}\cdot9\left(b^2+2ac\right)}=6\)

\(\frac{1}{c^2+2ab}+9\left(c^2+2ab\right)\ge2\sqrt{\frac{1}{c^2+2ab}\cdot9\left(c^2+2ab\right)}=6\)

Cộng theo vế ta có :

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\left(a^2+b^2+c^2+2ab+2bc+2ca\right)\ge18\)

<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\left(a+b+c\right)^2\ge18\)

<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\ge18\)

<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( đpcm )

Dấu "=" xảy ra <=> a = b = c = 1/3

26 tháng 8 2015

Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ca+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9.\)

16 tháng 4 2018

Cách 1:(nếu đã học BĐT Bunhia)=>Áp dụng BĐT Bunbiacopxki ta có:

\(\frac{1^2}{a^2+2bc}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{3^2}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Cách 2:chưa học BĐT ...

Với a,b,c>0 thì \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(tự chứng minh)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng ta có:\(BĐT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

12 tháng 7 2016

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) với \(x=a^2+2bc;y=b^2+2ac;z=c^2+2ab\)

Ta có : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=\frac{9}{\left(a+b+c\right)^2}\)

\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( Vì a + b + c = 1)

15 tháng 5 2016
Dùng Svaxơ là ra nha bạn
7 tháng 2 2021

undefined

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

9 tháng 6 2019

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{3^2}{\left(a+b+c\right)^2}=9\left(đpcm\right)\)

23 tháng 11 2019

shitbo

Làm như vầy là sai nha em

Đầu tiên ta cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\)

Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca=\left(a+b+c\right)^2\le1\)

\(\Rightarrow\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\ge\dfrac{9}{1}=9\)

\(\Rightarrowđpcm\)