Với \(a+b+c\le1\) và a, b, c >0
CMR:\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ba}\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hay thoi chứ để là \(a+b+c\le1\) đy, vì thấy ai cũng bảo đề sai nên sửa đề là vậy đi ạ '-'. Còn nếu pro nào là làm được cái đề gốc kia thì xin giải hộ em ạ T.T
Thầy tao làm như nào tao chép lại y nguyên nhá :)
Dự đoán điểm rơi a = b = c = 1/3
Áp dụng bất đẳng thức Cô si :
\(\frac{1}{a^2+2bc}+9\left(a^2+2bc\right)\ge2\sqrt{\frac{1}{a^2+2bc}\cdot9\left(a^2+2bc\right)}=6\)
TT : \(\frac{1}{b^2+2ac}+9\left(b^2+2ac\right)\ge2\sqrt{\frac{1}{b^2+2ac}\cdot9\left(b^2+2ac\right)}=6\)
\(\frac{1}{c^2+2ab}+9\left(c^2+2ab\right)\ge2\sqrt{\frac{1}{c^2+2ab}\cdot9\left(c^2+2ab\right)}=6\)
Cộng theo vế ta có :
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\left(a^2+b^2+c^2+2ab+2bc+2ca\right)\ge18\)
<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\left(a+b+c\right)^2\ge18\)
<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\ge18\)
<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( đpcm )
Dấu "=" xảy ra <=> a = b = c = 1/3
Cho a,b,c lớn hơn 0 và\(a+b+c\le1\)
CM; \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Theo bất đẳng thức Cauchy-Schwartz ta có
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ca+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9.\)
Cách 1:(nếu đã học BĐT Bunhia)=>Áp dụng BĐT Bunbiacopxki ta có:
\(\frac{1^2}{a^2+2bc}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{3^2}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Cách 2:chưa học BĐT ...
Với a,b,c>0 thì \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(tự chứng minh)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Áp dụng ta có:\(BĐT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) với \(x=a^2+2bc;y=b^2+2ac;z=c^2+2ab\)
Ta có : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=\frac{9}{\left(a+b+c\right)^2}\)
\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( Vì a + b + c = 1)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{3^2}{\left(a+b+c\right)^2}=9\left(đpcm\right)\)
Đầu tiên ta cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)
Áp dụng:\(\Rightarrow\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\)
Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca=\left(a+b+c\right)^2\le1\)
\(\Rightarrow\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\ge\dfrac{9}{1}=9\)
\(\Rightarrowđpcm\)
sai de thi phai
ĐK:\(a+b+c\le1|a,b,c>0\)
Chỉ có TH \(a=b=c=\frac{1}{3}\)\(\Rightarrow TH:a+b+c=1\)
\(\Rightarrow\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2+2\left(\frac{1}{3}\right)^2}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2\left(2+1\right)}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2.3}3\ge9\)\(=\frac{1}{\frac{1}{3}.\frac{1}{3}.3}3\ge9\)\(=\frac{1}{\frac{1}{3}}3\ge9\)\(=\frac{3}{\frac{1}{3}}\ge9\)\(=3:1:3\ge9\)\(=1\ge9\)( loại )
Vậy không thể CMR \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ba}\ge9\).