K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Áp dụng tỉ số tanB trong tam giác vuông HAB và các hệ thức lượng trong tam giác vuông, chúng ta tính được AC = 30 13 cm; BM = 601 4 cm

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

b: Xét tứ giác AEBC có

N là trung điểm chung của AB và EC

nên AEBC là hình bình hành

=>AE//BC và AE=BC

=>AD//AE và AD=AE
=>A là trung điểm của DE

19 tháng 10 2023

loading...   

\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)

⇒ AC = \(\dfrac{5}{12}\) .AB

= \(\dfrac{5}{12}.5\)

\(=\dfrac{25}{12}\) (cm)

∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

\(=5^2+\left(\dfrac{25}{12}\right)^2\)

= \(\dfrac{4225}{144}\)

⇒ BC = \(\dfrac{65}{12}\) (cm)

AH.BC = AB.AC

⇒ AH = AB . AC : BC

= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)

\(=\dfrac{25}{13}\left(cm\right)\)

M là trung điểm của AC

⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)

∆ABM vuông tại A

⇒ BM² = AB² + AM²

= \(5^2+\left(\dfrac{25}{24}\right)^2\)

= \(\dfrac{15025}{576}\)

⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)