K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

B= 62501 bạn nhé ! 

28 tháng 8 2017

Với x=25

=> \(B=x^7-\left(x+1\right)x^6+\left(x+2\right)x^5-\left(2x-3\right)x^4-\left(3x-2\right)x^3+2x.x^2+x-\left(x-1\right)\)

\(B=x^7-x^7-x^6+x^6+2x^5-2x^5+3x^4-3x^4+2x^3+2x^3+x-x+1\)

\(B=4x^3+1\)

B=4.253+1

B=62501

HQ
Hà Quang Minh
Giáo viên
2 tháng 8 2023

Thay x = 25 vào C, ta có: 

\(C=25^7-26\cdot25^6+27\cdot25^5-47\cdot25^4-77\cdot25^3+50\cdot25^2+25-24=-28144\)

2 tháng 8 2023

em cảm ơn

22 tháng 8 2017

Ta có:P=x3+y3+2xy=(x+y)33xy(x+y)+2xy=2013601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy

Đặt S=xy=x(201x)S=xy=x(201−x)

Dễ có:1x2001≤x≤200

S=200(x1)(x200)0Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200

Không mất tính TQ giả sử xyx100x≤y⇒x≤100

S=100.101(x100)(x101)100.101Smax=100.101

9 tháng 4 2021

\(B=\dfrac{2x^2-12x+25}{x^2-6x+12}=\dfrac{2\left(x^2-6x+12\right)+1}{x^2-6x+12}=2+\dfrac{1}{x^2-6x+9+4}=2+\dfrac{1}{\left(x-3\right)^2+4}\le2+\dfrac{1}{4}=\dfrac{9}{4}\)

Không có min nha bạn . Chỉ có max thôi 

Dấu = xảy ra khi x=3

B=x-y-(-18)=x-y+18

Khi x=-40 và y=-54 thì \(B=-40-\left(-54\right)+18\)

\(=-40+54+18\)

=14+18

=32

15 tháng 7 2023

\(B=8x^3+12x^2+6x+1\)

\(=8\left(\dfrac{1}{2}\right)^3+12\left(\dfrac{1}{2}\right)^2+6.\dfrac{1}{2}+1\)

\(=8.\dfrac{1}{8}+12.\dfrac{1}{4}+3+1\)

\(=1+3+4\)

\(=8\)

15 tháng 7 2023

Để tính giá trị của biểu thức B=8x^3+12x^2+6x+1 tại x=1/2, ta thay giá trị này vào biểu thức.

B = 8(1/2)^3 + 12(1/2)^2 + 6(1/2) + 1
= 8(1/8) + 12(1/4) + 6(1/2) + 1
= 1 + 3 + 3 + 1
= 8

Vậy, giá trị của biểu thức B tại x=1/2 là 8.

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)

\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)

\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)

\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)

\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)

\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)

\(=\dfrac{1}{2}\)

Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)

25 tháng 2 2021

a/

Để biểu thức được xác định

\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)

\(\odot2x-2\ne0\)

\(2x\ne2\)

\(x\ne1\)

\(\odot2x+2\ne0\)

\(2x\ne-2\)

\(x\ne-1\)

\(\odot x+1\ne0\)

\(x\ne-1\)

Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)

5 tháng 11 2023

Ta có:

\(\left(x-1\right)^2+\left(y+2\right)^2=0\)

Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay vào B ta có:

\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)

9 tháng 7 2018

a)  \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

b)  \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37=100\)

c)  \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10=25\)

9 tháng 7 2018

a) \(A=x^2+2xy+y^2-4x-4v+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

12 tháng 7 2015

\(\left(x^2-1\right)\left(x^2-2\right)...\left(x^2-2013\right)\)

Thay x = 10 vào biểu thức, ta được:

\(\Rightarrow\left(10^2-1\right)\left(10^2-2\right)...\left(10^2-100\right)....\left(10^2-2013\right)\)

\(\Rightarrow\left(10^2-1\right)\left(10^2-2\right)...0....\left(10^2-2013\right)=0\) (vì bao nhiêu nhân 0 cũng bằng 0)

25 tháng 3 2020

Bài 1: 

Ta có |x-8| > 0 với mọi x

=>A=37-|x-8| > 37 với mọi x

Vậy GTLN của A=37 với x-8=0 =>x=8

Bài 2 tương tự nhé

Học tốt :))