K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác OAEI có \(\widehat{OAI}+\widehat{OEI}=90^0+90^0=180^0\)

nên OAEI là tứ giác nội tiếp

Xét tứ giác OEBK có \(\widehat{OEK}=\widehat{OBK}=90^0\)

nên OEBK là tứ giác nội tiếp

2: Ta có: OAEI là tứ giác nội tiếp

=>\(\widehat{OIE}=\widehat{OAE}=\widehat{OAB}\left(1\right)\)

Ta có: OEBK là tứ giác nội tiếp

=>\(\widehat{OKE}=\widehat{OBE}=\widehat{OBA}\left(2\right)\)

Ta có: ΔOAB cân tại O

=>\(\widehat{OAB}=\widehat{OBA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{OIE}=\widehat{OKE}\)

=>\(\widehat{OIK}=\widehat{OKI}\)

=>ΔOKI cân tại O

3: Xét ΔOAI vuông tại A và ΔOBK vuông tại B có

OA=OB

OI=OK

Do đó: ΔOAI=ΔOBK

=>AI=BK

4: Xét tứ giác OACB có \(\widehat{OAC}+\widehat{OBC}=90^0+90^0=180^0\)

nên OACB là tứ giác nội tiếp

=>\(\widehat{OAB}=\widehat{OCB}\)

mà \(\widehat{OAB}=\widehat{OIK}\)

nên \(\widehat{OIK}=\widehat{OCK}\)

=>OICK là tứ giác nội tiếp

a: góc OAC+góc OBC=180 độ

=>OACB nội tiếp

b: góc OEA+góc OHA=180 độ

=>OEAH nội tiếp

góc OBD+góc OHD=180 độ

=>OHDB nội tiếp

góc OEH=góc OAH

góc ODH=góc OBH

mà góc OAH=gócc OBH

nên góc OEH=góc ODH

=>OE=OD

=>OA*OD=OB*OE

a) Xét ΔDAB có

DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)

DO là đường cao ứng với cạnh AB(gt)

Do đó: ΔDAB cân tại D(Định lí tam giác cân)

Suy ra: \(DA=DB\)(hai cạnh bên)

hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)

Xét (O) có 

\(\widehat{AID}\) là góc nội tiếp chắn cung AD

\(\widehat{BID}\) là góc nội tiếp chắn cung BD

mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)

nên \(\widehat{AID}=\widehat{BID}\)

hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)

b) Xét (O) có 

\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FIB}=90^0\)

Xét tứ giác BIFO có 

\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối

\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)

20 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

24 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì AE, BF là các tiếp tuyến của nửa đường tròn nên

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
5 tháng 5 2016

cho xin cái hình

a: Xét (O) có

DC,DB là tiếp tuyến

=>DC=DB

mà OB=OC

nên OD là trung trực của BC

=>OD vuông góc BC tại N

góc DNC=góc DHC=90 độ

=>DHNC nội tiếp

b: Xét ΔDCB có

DN,Ch là đường cao

DN  cắt CH tại M

=>M là trực tâm

=>BM vuông góc CD

=>BM//CO

Xét tứ giác OBMC có

OB//MC

MB//OC

OB=OC

=>OBMC là hình thoi

=>CM=CO