K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2015

Trừ cả 2 vế cho 7 ta được:

\(\frac{x^2+2006x-1}{2006}-1+\frac{x^2+2006x-2}{2005}-1+...+\frac{x^2+2006x-7}{2000}-1\)

\(=\frac{x^2+2006x-8}{1999}-1+...+\frac{x^2+2006x-14}{1993}-1\)

=>  \(\frac{x^2+2006x-2007}{2006}+\frac{x^2+2006x-2007}{2005}+...+\frac{x^2+2006x-2007}{2000}=\frac{x^2+2006x-2007}{1999}+...+\frac{x^2+2006x-2007}{1993}\)

=> \(\left(x^2+2006x-2007\right)\left(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}-...-\frac{1}{1993}\right)=0\)

=> x2 + 2006x -2007 = 0.  Vì \(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}<\frac{1}{1999}+...+\frac{1}{1993}\Rightarrow\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}+...+\frac{1}{1993}<0\)

=>  x2 + 2007x- x - 2007 = 0 => (x - 1)(x + 2007) = 0 => x = 1 hoặc x = -2007

Vậy pt có 2 nghiêm x = 1 ; -2007

1 tháng 4 2015

mình sửa lại chút sai xót bài giải trên: nhận xét 1/2006+...+ 1/2000-1/1999-...- 1/993 < 0 nhé!  sửa dấu + thành dấu - 

27 tháng 1 2017

Em chỉ bít đáp án thui ạ . Là 2005 ạ

27 tháng 1 2017

y đâu bạn

2 tháng 7 2015

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

21 tháng 3 2018

a,\(A=x^{2005}-2006x^{2004}+............+2006x-1\\ A=x^{2005}-\left(x+1\right)x^{2004}+..............+\left(x+1\right)x-1\\ A=x^{2005}-x^{2005}+x^{2004}-x^{2004}+.............+x^2+x-1\\ A=x-1\\ \Leftrightarrow A=2004\)vậy

12 tháng 4 2020

a,A=x2005−2006x2004+............+2006x−1A=x2005−(x+1)x2004+..............+(x+1)x−1A=x2005−x2005+x2004−x2004+.............+x2+x−1A=x−1⇔A=2004

10 tháng 12 2015

\(A=x^{2005}-2005x^{2004}-x^{2004}+2005x^{2003}+x^{2003}-2005x^{2002}-.....+x^3-2005x^2-x^2+2005x+x-2005+2004\)\(=\left(x-2005\right)x^{2004}-\left(x-2005\right)x^{2003}+\left(x-2005\right)x^{2002}-....+\left(x-2005\right)x^2-\left(x-2005\right)x+\left(x-2005\right)+2004\)\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-......+x^2-x+1\right)+2004\)

Với x = 2005 => x - 2005 =0

=> A =2004

10 tháng 11 2017

sao ao dieu the

24 tháng 6 2020

Ta có :

\(x=2005\Rightarrow x+1=2006\)

Thay \(2006=x+1\) vào biểu thức trên ta được : 

\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)

\(=x-1\) mà \(x=2005\)

\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

10 tháng 12 2015

Thay x=2005 vào biểu thức, ta được:

20052005-2006*20052004+...+2006*20052-2006*2005-1

=20052005-(2006*20052004-..-2006*20052+2006*2005+1)

Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)

2005A=2006*20052005-..-2006*20053+2006*20052+2005

2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004

2005A-A=2004-2005*2006

2004A=2004-2005*2006

A=(2004-2005*2006)/2004=1-(2005*2006)/2004

=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004

đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý