K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

a/ \(x=\sqrt{2}-1\)

b/ Giả sử x là số vô tỷ 

\(x=\frac{m}{n}\left[\left(m,n\right)=1\right]\)

\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)

Vì \(x-\frac{1}{x}\)là số nguyên \(\Rightarrow m^2-n^2⋮m\)

\(\Rightarrow n^2⋮m\)

Mà m, n nguyên tố cùng nhau nên 

\(\Rightarrow n=1;-1\)

Tương tự ta cũng có: \(m=1;-1\)

\(\Rightarrow x=1;-1\) trái giả thuyết

\(\Rightarrow x\)là số vô tỷ

Ta có:

\(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)

\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ

Ta có:

\(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\) là số nguyên

\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\) là số hữu tỉ và \(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)là số vô tỉ.

30 tháng 8 2017

3689254

3 tháng 5 2017

Giả sử x là số hữu tỷ thì ta có

\(x=\frac{m}{n}\left(\left(m,n\right)=1\right)\)

\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)

Vì \(x-\frac{1}{x}\)là số nguyên nên m2 - n2 \(⋮\)m

\(\Rightarrow\)n2 \(⋮\)

Mà n,m nguyên tố cùng nhau nên

m = \(\pm\)1

Tương tự ta cũng có

n =\(\pm\)1

\(\Rightarrow\)x = \(\pm\)1

Trái giả thuyết.

Vậy x phải là số vô tỷ.

Ta có: \(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)

\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ.

Ta có: \(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\)nên là số nguyên

\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\)là số hữu tỷ.

Mà \(x+\frac{1}{x}\)là số vô tỷ nên

\(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)

là số vô tỷ

4 tháng 8 2019

\(a,Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}};x>0;x\ne1;x\ne4\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

4 tháng 8 2019

\(a,\)\(Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{x-1}\)\(\left(đpcm\right)\)

\(b,Q=\frac{2}{x-1}\)

\(Q\in Z\Leftrightarrow\frac{2}{x-1}\in Z\Rightarrow x-1\inƯ_2\)

Mà \(Ư_2=\left\{\pm1;\pm2\right\}\)

TH1 : \(x-1=-1\Rightarrow x=0\)

TH2 : \(x-1=1\Rightarrow x=2\)

TH3 : \(x-1=-2\Rightarrow x=-1\)

TH4 :\(x-1=2\Rightarrow x=3\)

\(\Rightarrow\)x nguyên lớn nhất là 3 để Q là số nguyên

25 tháng 8 2021

\(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}+1}{x-1}\)

\(A=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)

7 tháng 10 2016

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-yz\right)}\)

\(\Rightarrow\left(x^2-yz\right)y\left(1-yz\right)=\left(y^2-xz\right)x\left(1-yz\right)\)

\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2=xy^2-x^2z-xy^3z+x^2yz^2\)

\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+x^2z+xy^3z-x^2yz^2=0\)

\(\Rightarrow xy\left(x-y\right)-xyz\left(x-y\right)\left(x+y+z\right)+z\left(x-y\right)\left(x+y\right)=0\)

\(\Rightarrow\left(x-y\right)\left[xy-xyz\left(x+y+z\right)+xz+yz\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy+yz+zx=0\end{cases}}\)

Mà \(x\ne y\) nên \(xy+xz+yz-xyz\left(x+y+z\right)=0\)

\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

Đpcm

7 tháng 10 2016

Từ gt ta có : (x2 - yz)y(1 - yz) = (y2 - xz)x(1 - yz)

=> 0 = VT - VP = (x2y - x3yz - y2z - xy2z2) - (xy2 - xy3z  - x2z - x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)

= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)(xy + yz + xz - xyz(x + y + z)]

\(x\ne y\Rightarrow x-y\ne0\) nên xy + yz + xz - xyz(x + y + z) = 0 => xy + yz + xz = xyz(x + y + z)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

28 tháng 4 2020

a) Vì x>=0 và x2=16

=> x=4 => \(\sqrt{x}=2\)

=> B=\(\frac{2\cdot2+3}{4-1}=\frac{7}{3}\)

b) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1}\)

\(=\frac{x+2\sqrt{x}+1-x+\sqrt{x}+2\sqrt{x}-2}{x-1}\)

\(=\frac{5\sqrt{x}-1}{x-1}\)

=> \(A\left(x-1\right)=5\sqrt{x}-1\left(đpcm\right)\)

c) \(\frac{A}{B}=\frac{5\sqrt{x}-1}{x-1}\cdot\frac{x-1}{2\sqrt{x}+3}=\frac{5\sqrt{x}-1}{2\sqrt{x}+3}=\frac{\frac{5}{2}\left(2\sqrt{x}+3\right)-\frac{17}{2}}{2\sqrt{x}+3}=\frac{5}{2}-\frac{17}{2\left(2\sqrt{x}+3\right)}\)

=> 17 chia hết cho \(2\sqrt{x}+3\)

\(\Rightarrow2\sqrt{x}+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

ta có bảng

\(2\sqrt{x}+3\)-17-1117
\(\sqrt{x}\)-17-2-7
x\(\varnothing\)49\(\varnothing\)\(\varnothing\)
2 tháng 10 2016

ngu quá có thế cũng không làm được

2 tháng 10 2016

Nguyễn Minh Phương trẻ trâu quá giỏi làm đi ko làm đc thì câm ko làm đc mà  oai thì ăn chửi