K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

a) \(A⋮3\)

\(A=2^0+2^1+2^2+....+2^{41}\)

   \(=\left(2^0\times1+2^0\times2\right)+...+\left(2^{40}\times1+2^{40}\times2\right)\)

    \(=2^0\times\left(1+2\right)+....+2^{40}\times\left(1+3\right)\)

    \(=2^0\times3+...+2^{40}\times3\)

    \(=3.\left(2^0\times...\times2^{40}\right)⋮3\)

Vậy \(A⋮3\)

b) \(A⋮7\)

\(A=2^0+2^1+2^2+...+2^{41}\)

   \(=\left(2^0\times1+2^0\times2+2^0\times2^2\right)+...+\left(2^{39}\times1+2^{39}\times2+2^{39}\times2^2\right)\)

   \(=2^0\times\left(1+2+2^2\right)+...+2^{39}\times\left(1+2+2^2\right)\)

   \(=2^0\times7+...+2^{39}\times7\)

   \(=7\times\left(2^0+...+2^{39}\right)⋮7\)

Vậy \(A⋮7\)

Nếu đúng thì k cho mk nhé

   

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

1 tháng 9 2017

mk biết làm câu a thôi :(

1 tháng 9 2017

mình cũng chỉ làm được câu a thôi. hì hì

29 tháng 10 2023

a) \(A=1+2+2^2+...+2^{41}\)

\(2A=2+2^2+...+2^{42}\)

\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)

\(A=2^{42}-1\)

b) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)

\(A=3+2^2\cdot3+...+2^{40}\cdot3\)

\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)

Vậy A ⋮ 3

__________

\(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)

\(A=7+...+2^{39}\cdot7\)

\(A=7\cdot\left(1+..+2^{39}\right)\)

Vậy: A ⋮ 7

c) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)

\(A=5\cdot\left(1+2+...+2^{39}\right)\)

A ⋮ 5 nên số dư của A chia cho 5 là 0 

29 tháng 10 2023

Xem lại phần c dòng này nhé a

\(A=\left(1+2^2\right)+\left(2^2+2^4\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

có 2 số \(2^2\)?

15 tháng 12 2017

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

3 tháng 10 2015

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

12 tháng 10 2022

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

1 tháng 9 2017

Ta có :

a . A = 1 + 3 + 32 + 33 + ... + 399

         = ( 1 + 3 ) + ( 32 + 33 ) + ( 34 + 35 ) + ... + ( 398 + 399 )

         = 1. ( 1 + 3 ) + 32 . ( 1 + 3 ) + 34 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )

         = 1 . 4 + 32 . 4 + 34 . 4 + ... + 398 . 4

         = ( 1 + 32 + 34 + ... + 398 ) .4 \(⋮\)4 ( đpcm ) .

b . Vì 164 = 41 . 4

    Nên nếu A chia hết cho 41 thì A cũng chia hết cho 164 ( do A chia hết cho 4 )

          

1 tháng 9 2017

cảm ơn bạn.

13 tháng 7 2019

Bài 2 thôi em dùng đồng dư cho chắc:v

a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)

Suy ra đpcm.

b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)

Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)

Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)

Suy ra đpcm

c) Do 41 là số nguyên tố và (2;41) = 1 nên:

\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)

Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)

Suy ra đpcm.

d) Tương tự

14 tháng 10 2017

cho a+b+c=0 cmr

a^3 + b^3+a^2c+b^2c-abc=0

5 tháng 1 2018

A=2+22+23+...+260

A=(2+22+23)+...+(258+259+260)

A=12.1+...+257.(2+22+23)

A=12.1+...+257.12

A=12.(1+...+257)chia hết cho  3 vì 12 chia hết cho 3

tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm