K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

<=>\(a^2\left(a-b\right)-b^2\left(a-b\right)\)>=0

<=>\(\left(a-b\right)\left(a^2-b^2\right)\)>=0

<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0

Vì \(\left(a-b\right)^2\)>=0

<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0 (đpcm)

27 tháng 8 2017

Vì  \(a,b\ge0\)nên 

\(a+b\ge0\)(1)

\(\left(a-b\right)^2\ge0\)(2)

Nhân vế với vế của 1 và 2 , ta được : 

\(\left(a+b\right)\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab-ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab.\left(a+b\right)\ge0\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

23 tháng 4 2017

A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)

B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)

áp dụng BĐT AM-GM

\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)

cộng 2 vế của BĐT cho nhau

\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)

C)tương tự câu B) ta có

\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)

cộng từng vế của BĐT ta có đpcm

13 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2\sqrt{a^2b^2}-ab\right)\)

\(=\left(a+b\right)\left(2ab-ab\right)\)

\(=ab\left(a+b\right)=a^2b+ab^2=VP\)

Đẳng thức xảy ra khi \(a=b\)

31 tháng 3 2018

mình ko hiêu bạn ơi

23 tháng 4 2017

A)\(A^2+B^2\ge AB+AB\)

\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)

\(\Leftrightarrow A^2-2AB+B^2\ge0\)

\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)

Vậy \(A^2+B^2\ge AB+AB\)(đpcm)

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

a) Sai với \(a=1,b=2\)

b)

Thực hiện biến đổi tương đương:

\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)

\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$

c) BĐT sai với \(a=1,b=2\)

24 tháng 5 2018

Cảm ơn thầy Akai Haruma

16 tháng 7 2018

Bất đẳng thức cần chứng minh tương đương với:

\(a^3b^2-a^2b^3+b^3c^2-c^3b^2+c^3a^2-c^2a^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b+b-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+c^2a^2\left(b-a\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a^2b^2-c^2a^2\right)\left(a-b\right)+\left(b^2c^2-c^2a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow a^2\left(b^2-c^2\right)\left(a-b\right)+c^2\left(b^2-a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(a^2b+a^2c-c^2a-c^2b\right)\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a\left(ab-c^2\right)+c\left(a^2-bc\right)\right]\left(a-b\right)\left(b-c\right)\ge0\) luôn đúng do \(a\ge b\ge c\ge0\)

16 tháng 7 2018

cảm ơn bạn nhá, bạn trả lời giúp mình mấy câu hỏi về BĐT còn lại của mik đc ko? cảm ơn bn nhiều!

1 tháng 4 2017

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

1 tháng 4 2017

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

16 tháng 2 2019

bn vô câu hỏi tương tự có hết nhé