B=88...8-9+n
88...8 có n chữ số 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 888...8 - 9 + n
n chữ số 8
B = 888...8 - 8n + 9n - 9
n chữ số 8
B = 8.(111...1 - n) + 9.(n - 1)
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 111...1 có tổng các chữ số là n
n chữ số 1
=> 111...1 - n chia hết cho 9 mà 9.(n - 1) chia hết cho 9
=> B chia hết cho 9 (đpcm)
B = 888...8 - 9 + n
n chữ số 8
B = 888...8 - 8n + 9n - 9
n chữ số 8
B = 8.(111...1 - n) + 9.(n - 1)
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 111...1 có tổng các chữ số là n
n chữ số 1
=> 111...1 - n chia hết cho 9 mà 9.(n - 1) chia hết cho 9
=> B chia hết cho 9 (đpcm)
Tổng các chữ số của B:
8 + 8 + 8 + ... + 8 - 9 + n (n chữ số 8)
= 8n - 9 + n
= 9n - 9
= 9.(n - 1) ⋮ 9
Vậy B ⋮ 9
Đặt \(\overline{111......1}=a\left(n-chu-so-1\right)\) Khi đó \(10^n=9a+1\)
\(D=\overline{1111.....1}-\overline{8888.....8}+1\)
\(=a\cdot10^n+8a+1=a\left(9a+1\right)+a-8a+1=9a^2-6a+1\)
\(=\left(3a-1\right)^2=\left(33333.....33\right)^2\left(n-chu-so-3\right)\)
Vậy ta có đpcm
xét 888...8 + n ( n chữ số 8)
ta có 888....8 + n ( n chữ số 8) có tổng các chữ số là 8n
nếu 888...8 + n ( n chữ số 8) chia hết cho 9 thì phải 8n + n phải chia hết cho 9 hay 9n chia hết cho 9
\(=>888....8+n\text{( n chữ số 8)}\) chia hết cho 9
\(=>888...8+n\text{( n chữ số 8) -9}\) chia hết cho 9 ( đpcm)
tk cho mk nha
đề bị sai ak