K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

lấy n = 2 => 202 + 62 + 32-1 = 439 không chia hết cho 323 

=> đề sai

14 tháng 4 2016

phải là 20n+16n-3n-1 mới đúng

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

3 tháng 3 2017

bt thôi

2 tháng 9 2016

Ta có 323=17.19

+Chứng minh A⋮17 

Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n) 

Nhận xét⎨(16n−1)⋮17                           (20n−3n)⋮17  

 ⇒A⋮17  (1)

+Chứng minh A⋮19A⋮19

Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)

Nhận xét ⎨(16n+3n)⋮19                     (20n−1)⋮19 

⇒A⋮19 (2)

Mà (17;19)=1(17;19)=1

Từ (1) và (2)⇒A⋮BCNN(17.19)

hay  A⋮323 (đpcm)

23 tháng 1 2018

là 10 nhé

30 tháng 1 2021

Ta có: A = 20n + 16n - 3n - 1

Do n chẵn => n = 2k

Khi đó: A = 202k + 162k - 32k - 1

A = (202k - 1) + (256k - 9k

Do 202k - 1 \(⋮\)(20 - 1) = 19

 256k - 9k \(⋮\)(256 - 9) = 247 \(⋮\)19

=> A \(⋮\)19 (1)

Mặt khác, ta lại có: 

A = 202k + 162k - 32k - 1 = (202k - 32k) + (256k - 1)

Do 202k - 32k \(⋮\)(20 - 3) = 17

256k - 1 \(⋮\)(256 - 1)= 255 \(⋮\)17

=> A  \(⋮\)17 (2)

Mà (17; 19) = 1 => A \(⋮\)17.19 = 323 (đpcm)

30 tháng 1 2021

Vì n chẵn 

Đặt n = 2k (k \(\inℕ\))

Khi đó A = 20n + 16n - 3n - 1

= 202k + 162k - 32k - 1 

= 400k + 256k - 9k - 1

= (400k - 1) + (256k - 9k)

= (400 - 1)(400k - 1 + 400k - 2 + ... + 1) + (256 - 9)(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 399(400k - 1 + 400k - 2 + ... + 1) + 247(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 19.21.(400k - 1 + 400k - 2 + ... + 1) + 19.13(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 19.(21.(400k - 1 + 400k - 2 + ... + 1) + 13(256k - 1 + 256k - 2.9 + ... + 9k - 1)) \(⋮\)19 (1)

Lại có A = 400k + 256k - 9k - 1 

= (400k - 9k) + (256k - 1)

= (400 - 9)(400k - 1 + 400k - 2.9 + .... + 9k - 1) + (256 - 1)(256k - 1 + 256k - 2 + .... + 1)

= 391(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 255(256k - 1 + 256k - 2 + .... + 1)

= 17.23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 17.15(256k - 1 + 256k - 2 + .... + 1)

= 17.(23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 15(256k - 1 + 256k - 2 + .... + 1)) \(⋮\)17 (2)

Lại có ƯCLN(17;19) = 1 (3)

Từ (1)(2)(3) => A \(⋮17.19=323\)(ĐPCM)

14 tháng 4 2016

chép sai đề rồi

19 tháng 5 2017

Ta có: 323=17.19 và 20n+16n-3n-1

(20n-10)+(16n-3n) chia hết ho 19  (1)

( vì 20n-1 chia hết cho 20-1=19) và 16n-3n chia hết cho 19 vì n chẵn

Vậy 20n+16n-3n-1 = ( 20n-3n)+(16n-1) chia hết cho 17  (2)

Từ (1) và (2) và ƯCLN(17, 19)=1 suy ra :

(20n+16n-3n-1) chia hết cho 323

29 tháng 9 2018

Ta thấy :

 323=17.19 và (17;19)=1 nên ta cần chứng minh 

\(20^n-1+16^n-3^n⋮17\) và \(19\)

Ta có : 
\(20^n-1⋮\left(20-1\right)=19\) ;    \(16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn )                              (1)
Mặt khác :
\(20^n+16^n-3^n-1=20^n-3^n+16^n-1\) và  \(20^n-3^n⋮\left(20-3\right)=17\) ; \(16^n-1⋮\left(16+1\right)=17\)( 2 )
Từ ( 1 ) và (2 ) 
\(\Rightarrow20^n+16^n-3^n-1⋮323\)