\(\overline{6a49b}\)chia hết cho 2;5 và 9
\(\overline{6a49b}\)chia hết cho 2 và 9
Ai giải ra đc và đầy đủ mk tick 10 phát luôn.Hứa!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu muốn chia hết cho cả 2 và 5 thì tận cùng của số đó phải là 0
Muốn chia hết cho 9 thì tổng các chữ số phải chia hết cho 9
Ta có 6a490 chia hết cho 9 : ( 6 + a + 4 + 9 + 0 ) : 9 = ( 19+ a ) : 9 => a = 8
Vậy số đó là 68490
Muốn chia hết cho 2 thì số tận cùng của số đó phải là các số chẵn ta có ccs trường hợp là : 0 ; 2 ; 4 ; 6 ; 8
Nếu b = 0 Thì 6a490 chia hết cho 9 : ( 6 + a + 4 + 9 + 0 ) : 9 = ( 19 + a ) : 9 => a = 8 ( phù hợp )
Nếu b = 2 Thì 6a492 chia hết cho 9 : ( 6 + a + 4 + 9+ 2 ) : 9 = ( 21 + a ) : 9 => a = 6 ( phù hợp )
nếu b = 4 thì 6a494 chia hết cho 9 : ( 6 + a + 4 + 9 + 4 ) : 9 = ( 23 + a ) : 9 => a = 4 ( phù hợp )
Nếu b = 6 thì 6a496 chia hết cho 9 : ( 6 + a + 4 + 9 + 6 ) : 9 = ( 25 + a ) : 9 =>a = 2 ( phù hợp )
Nếu b = 8 thì 6a498 chai hết cho 9 : ( 6 + a + 4 + 9 + 8 ) : 9 = ( 27 + a ) : 9 => a = 0 ( phù hợp )
Vậy ta có các số là : 68490 ; 66492 ; 64494 ; 62496 ; 60498
Còn phần cuối tôi mk làm cho
a) Vì \(\overline{6a49b}\)chia hết cho 2 và 5 nên có tận cùng bằng 0 \(\Rightarrow b=0\)và trở thành \(\overline{6a490}\)
Nhưng lại chia hết cho 9 nên \(\left(6+a+4+9+0\right)=\left(19+a\right)⋮9\Leftrightarrow a=8\)
b) Tương tự dùng các dấu hiệu chia hết ta được 5 trường hợp:
\(\hept{\begin{cases}b=0\\a=8\end{cases};\hept{\begin{cases}b=2\\a=6\end{cases};\hept{\begin{cases}b=4\\a=4\end{cases};\hept{\begin{cases}b=6\\a=2\end{cases};\hept{\begin{cases}b=8\\a=0\end{cases}}}}}}\)
Thử lại thì đúng nhé!
vì 6a49b chia hết 2 và 5 suy ra b=0
nếu b=0 thì 6a490 chia hết 9 suy ra a=8
12 = 3.4
Để B chia hết cho 4 thì b = 2 ; 6
Nếu b = 2 thì a = 3 ( hoặc 6 ; 9 ) để B chia hết cho 12
Nếu b = 6 thì a = 2 ( hoặc 5 ; 8 )để B chia hết cho 12
15 = 3 . 5
Để B chia hết cho 5 thì b = 0 ; 5
Nếu b = 0 thì a = 2 ( hoặc 5 ; 8 ) để B chia hết cho 15
Nếu b = 5 thì a = 3 ( hoặc 6 ; 9 ) để B chia hết cho 15
a) Ta có : Để 6a49b chia hết cho 2 và 5
=> 6a49b \(⋮\)10
=> 6a49b tận cùng là 0
=> b = 0
=> Số mới có dạng là 6a490
Lại có : Để 6a490 chia hết cho 9
=> (6 +a + 4 + 9 + 0) \(⋮\)9
=> (19 + a) \(⋮\)9
=> a = 8
Thay a,b vào ta được các số cần tìm là : 68490
b) Ta có : Để 6a49b chia hết cho 2 và 5
=> 6a49b \(⋮\)10
=> 6a49b tận cùng là 0
=> b = 0
=> Số mới có dạng là 6a490
Lại có : 6a490 : 9 dư 1
=> (6 + a + 4 + 9 + 0) : 9 dư 1
=> (19 + a) : 9 dư 1
=> (19 - 1 + a) \(⋮\)9
=> (18 + a) \(⋮\)9
=> a \(\in\){0;9}
=>Thay a,b vào ta được các số cần tìm là : 60490 ; 69490
a ) Muốn chia hết cho cả 2 và 5 thì tận cùng của số đó phải là : 0
Muốn chia hết cho 9 thì tổng các chữ số chia hết cho 9
6a490 chia hết cho 9 = ( 6 + a + 4 + 9 + 0 ) : 9 = ( 19 + a ) : 9 => a = 8
Vậy số đó là : 68490
b . Muốn chia hết cho 2 thì các chữ số tận cùng là số chẵn ta có các trường hợp sau : 0 2 ; 4 ; 6 ; 8
nếu b = 0 thì 6a490 chia hết cho 9 = ( 6 + 4 + a + 9 + 0 ) : 9 = ( 19 + a ) : 9 => a = 8 ( phù hợp )
Nếu b = 2 thì 6a492 chia hết cho 9 = ( 6 + a + 4 + 9 + 2 ) : 9 = ( 21 + a ) : 9 => a = 6 ( phù hợp )
Nếu b = 4thif 6a494 chia hết cho 9 = ( 6 + a + 4 + 9 + 4 ) : 9 = ( 23 + a ) : 9 => a = 4 ( phù hợp )
Nếu b = 6 thì 6a496 chia hết cho 9 = ( 6 + a + 4 + 9 + 6 ) : 9 = ( 25 + a ) : 9 => a = 2 ( phù hợp )
nếu b = 8 thì 6a498 chia hết cho 9 = ( 6 + a + 4 + 9 + 8 ) : 9 = ( 27 + a ) : 9 => a = 0 hoặc a = 9 ( phù hợp )
vậy có tát cả : 68490 ; 66492 ; 64494 ; 62496 ; 60498 ; 69498
cách 1
a) số 6a49b chia hết cho 2 và 5 thì chữ số tận cùng phải bằng 0, tức là b = 0
số 6a490 chia hết cho 9 khi 6+a+4+9+0 = 19 + a chia hết cho 9 suy ra a = 8
b) số 6a49b chia hết cho 2 thì chữ số tận cùng phải bằng 0, 2; 4; 6; 8
tức là b = 0; 2; 4; 6; 8. Xẩy ra 5 trường hợp
*) Nếu b = 0 thì số 6a490 chia hết cho 9 khi 6+a+4+9+0 = 19 + a chia hết cho 9 suy ra a = 8
ta sẽ được số 68490
*) Nếu b = 2 thì số 6a492 chia hết cho 9 khi 6+a+4+9+2 = 21 + a chia hết cho 9 suy ra a = 6
ta sẽ được số 66492
*) Nếu b = 4 thì số 6a494 chia hết cho 9 khi 6+a+4+9+4= 23 + a chia hết cho 9 suy ra a = 4
ta sẽ được số 64494
*) Nếu b = 6 thì số 6a496 chia hết cho 9 khi 6+a+4+9+6 = 25 + a chia hết cho 9 suy ra a = 2
ta sẽ được số 62496
*) Nếu b = 8 thì số 6a498 chia hết cho 9 khi 6+a+4+9+8 = 27 + a chia hết cho 9 suy ra a = 0
ta sẽ được số 60498
cách 2
a. (6+a+4+9+b)chia hết cho 9 ,<->19+a+b chia het cho 9
mà 0<=a+b<=18 (vì 0<=a,b<=9)
-> 19<=19+a+b<=18+19
-> 19+a+b chia het cho 9 ->19+a+b nhận 2 giá trị :27 và 36
-> a+b nhận 2 giá trị: 8 va 17
6a49b chia het cho 2 nen b phai la chẵn (1)
mà 6a49b chia hết cho 5 nen b phải là 0 hoặc 5 (2)
(1)+(2) ->b=0
->a=8 hoặc a=17
tuy nhiên a là số tự nhiên nên a=8
kết quả là: a=8, b=0 và số đó là :68490
b. làm tương tự như trên ta có
a=8,b=0 hoặc
a=6, b=2 hoặc
a=4, b=4 hoặc
a=2, b=6 hoặc
a=0, b=8 hoặc
a=9, b=8 hoặc (vi a,b thuộc từ 0 đến 9 và b là số chẵn)
cách 3
Điều kiện : 0=< a,b <=9 và a,b thuộc N
a) Để số 6a49b Chia hết cho 2 , 5 thì b = 0
Để 6a490 chia hết cho 9 thì tổng các chữ số ( 6 + a + 4 + 9 + 0 ) phải chia hết cho 9
=> a = 8 vậy số đó là 68490
b ) Để số 6a49b chia hết cho 2 thì b = { 0 ; 2 ; 4 ; 6 ; 8 }
+ Trường hợp b = 0 => a = 8 => số đó là 68490
+ Trường hợp b = 2 => a = 6 => số đó là 66492
+ Trường hợp b = 4 => a = 4 => số đó là 64494
+ Trường hợp b = 6 => a = 2 => số đó là 66492
+ Trường hợp b = 8 => a = { 0 ; 9 } => số đó là 68490 hoặc 69498
Câu 2 nhé Điều kiện : 0=< a <=9 và a thuộc N* ( N* vì a ở hàng nghìn không thể = 0 )
A chia het cho 2 va 5=>b=0
=>A co dang:a0a0
A chia het cho 3 =>tổng các chữ số của A chia hết cho 3
=>a+0+a+0=2a chia het cho 3
Vậy a = { 3 ; 6; 9 } => các số có thể là 3030 ; 6060 ; 9090
bn thích chọn cách nào thì chọn nhưng nhớ k mk nha!!
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) chia hét cho 2 và 5 thì b bằng 0, 6a490 chia hết cho 9 thì a=8
b) chia hét cho 2 thì b có thể bằng 2 4 6 8 0. ban thay số vào sẽ ra a. ta có những số 68490 66492 64494
62496 60498
k cho mình nhé