tinhs nhanh
\(\frac{1994}{1995}x\frac{19951995}{19311931}x\frac{193119311913}{199419941994}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1995}{1996}.\frac{19961996}{19311931}.\frac{19311931}{19951995}=\frac{1995}{1996}.\frac{1996}{1931}.\frac{1931}{1995}=1\)
\(\frac{1313}{2121}.\frac{165165}{143143}.\frac{424242}{151515}=\frac{13}{21}.\frac{165}{143}.\frac{42}{15}=\frac{1}{1}.\frac{11}{11}.\frac{2}{1}=2\)
\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)
\(\Leftrightarrow\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+1+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4=0\)
\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)
Mà \(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy . . . . . . . .
\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)
\(\Rightarrow\left(\frac{x+24}{1996}+1\right)+\left(\frac{x+25}{1995}+1\right)+\left(\frac{x+26}{1994}+1\right)+\left(\frac{x+27}{1993}+1\right)+\left(\frac{x+2036}{4}-4\right)=0\)
\(\Rightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)
\(\Rightarrow\left(x+2020\right)\left(\frac{1}{4}+\frac{1}{1993}+\frac{1}{1994}+\frac{1}{1995}+\frac{1}{1996}\right)=0\)
Vì \(\left(\frac{1}{4}+\frac{1}{1993}+\frac{1}{1994}+\frac{1}{1995}+\frac{1}{1996}\right)\ne0\)nên \(x+2020=0\Rightarrow x=-2020\)
Vậy x = -2020
Ta có \(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}\)
\(\Leftrightarrow\left(\frac{x+24}{1996}+1\right)+\left(\frac{x+25}{1995}+1\right)+\left(\frac{x+26}{1994}\right)+\left(\frac{x+27}{1993}\right)+\left(\frac{x+2036}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}\right)=0\)
\(V\text{ì}\) \(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy phương trình có tập nghiệm \(S=\left\{-2020\right\}\)
\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)
\(\Leftrightarrow\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4==0\)
\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)
<=> x+2020=0 \(\left(\frac{1}{1996}+\frac{1}{1955}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)
<=> x=-2020
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
\(\frac{1994}{1995}x\frac{19951995}{19311931}x\frac{193119311931}{199419941994}\)= \(\frac{1994}{1995}x\frac{1995}{1931}x\frac{1931}{1994}\)
= \(\frac{1994x1995x1931}{1995x1931x1994}\)
= \(\frac{1994}{1994}x\frac{1995}{1995}x\frac{1931}{1931}\)
= \(1x1x1=1\)
mk ko hỉu