cho tam giác ABC cân tại A, có góc A 90 độ kẻ AM vuông góc với BC a) CM M là trung điểm của BC b) trên tia đối của tia MA lấy điểm E sao cho ME = MB . CMR BE vuông góc với EC c) qua điểm A vẽ dường thẳng vuông góc với tia EC, đường thẳng đó cắt EC tại I . So sánh EI và AC d) qua A vẽ đường thẳng song song với EI cắt EB tại H. CM HI song song với BC GIÚP MÌNH BÀI NÀY VÀ VẼ HÌNH VỚI , MÌNH NGHĨ MÃI KHÔNG RA MONG CÁC BẠN GÚP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1. bạn cm tam giác ABM bằng tg ECM suy ra góc BAM và CEM bằng nhau, AB bằng CE. mà AB nhỏ hơn AC nên CE nhỏ hơn AC. Xét tg ACE có CAE nhỏ hơn góc CEA. Suy ra góc CAE nhỏ hơn góc ABM.
Câu 2. cm tam giác ABD và EBD bằng nhau sra DE vuông góc với BC, AH//ED. Kéo dài DE Cắt AB tại K.cm 2 tam giác DEC và DAK bằng nhau. EC bằng AK. So sánh AK và EH bằng cách vẽ AM vuông góc với EK. Cm HE bằng AM. So sánh AM và AK trong tam giác vuông AMK có AM nhỏ hơn AK. Vậy HE nhỏ hơn EC. Chúc bạn học tốt.
Bài 1:
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
tu ve hinh :
a; b, xet tamgiac AMF va tamgiac AME co : AM chung
goc AFM = goc AEM = 90 do MF | AC va ME | AB (gt)
goc FAM = goc EAM do AM la phan giac cua goc BAC (gt)
=> tamgiac AMF = tamgiac AME (ch - gn)
=> AE = AF (dn) (1)
AB = AC do tamgiac ABC can tai A (gt)
AE + EB = AB
AF + FC = AC
=> EB = FC
xet tamgiac BEM va tamgiac CFM co : goc B = goc C do tamgiac ABC can tai A (gt)
goc MEB = goc MFC do ...
=> tamgiac BEM = tamgiac CFM (cgv - gnk)
=> MB = MC
c, (1) => tamgiac AEF can tai E (dn)
=> goc AEF = (180 - goc BAC) : 2
tamgiac ABC can tai A (gt) => goc B = (180 - goc BAC) : 2
=> goc AEF = goc B ma 2 goc nay dong vi
=> EF // BC (dh)
Giải
Bạn tự vẽ hình
a; b, Xét \(\Delta AMF\) va \(\Delta AME\) có : AM chung
\(\widehat{AFM}=\widehat{AEM}=90^0\) do MF\(\perp\)AC va ME\(\perp\)AB
\(\widehat{FAM}=\widehat{EAM}\)do AM la phân giác của \(\widehat{BAC}\)
\(\Rightarrow\Delta AFM=\Delta AME\)
\(\Rightarrow AE=AF\) (1)
AB = AC do \(\Delta ABC\) cân tại A
AE + EB = AB
AF + FC = AC
\(\Rightarrow\) EB = FC
Xét \(\Delta BEM\) và \(\Delta CFM\) có : \(\widehat{B}\) = \(\widehat{C}\) do \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{MEB}=\widehat{MFC}\)
\(\Rightarrow\Delta BEM=\Delta CFM\)
\(\Rightarrow\) MB = MC
c, Từ (1) suy ra \(\Delta AEF\)cân tại E
\(\Rightarrow\widehat{AEF}=\left(180-\widehat{BAC}\right)\div2\)
\(\Delta ABC\) cân tại A \(\Rightarrow\)\(\widehat{B}\)= (180 - \(\widehat{BAC}\)) : 2
\(\Rightarrow\widehat{AEF}=\widehat{B}\) mà hai góc này đồng vị
\(\Rightarrow EF//BC\)
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có
EB=FC
góc EBH=góc FCK
=>ΔEHB=ΔFKC
=>EH=FK
d: Xét ΔABH và ΔACK có
AB=AC
góc ABH=góc ACK
BH=CK
=>ΔABH=ΔACK
=>AH=AK
=>ΔAHK cân tại A
mà AM là đường cao
nên AM là phân giác của góc HAK
e: Xét ΔAHE và ΔAKF có
AH=AK
góc AHE=góc AKF
HE=KF
=>ΔAHE=ΔAKF
a) xét tam giác ABM = DCM( c-g-c ) (*)
=) * góc BAD = góc ADC
=) AB // CD
* AB = DC ( 1 )
xét tam giác ABH= EBH ( c-g-c )
=) AB = BE ( 2 )
từ (1) và (2)=) CD=BE
b) ( đề sai, phải là CD vuông góc AC mới đúng )
từ (*) =) góc ABM = DCM
mà tg ABC vuông tại A=) ABM+ACB=90 độ
suy ra góc DCM+ACB=90 độ
=) CD vuông góc vs AC
c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC
d) Do AM = 1/2BC
=) BC = 10cm
áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:
AB^2 + AC^2 = BC^2
AB^2 = 36
AB = 6cm
a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC
AM chung
Do đó: ΔAMB=ΔAMC
=>MB=MC
=>M là trung điểm của BC
b: Ta có: ME=MB
\(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
Do đó: \(EM=\dfrac{1}{2}BC\)
Xét ΔEBC có
EM là đường trung tuyến
\(EM=\dfrac{1}{2}BC\)
Do đó: ΔEBC vuông tại E
=>BE\(\perp\)EC