Cho tam giác ABC cân tại A. Trên cạnh BC lấy 2 điểm D và E sao cho BD = CE.
Nối AD và AE.
a)Chứng minh tam giác ABD = ACE .Từ đó suy ra tam giác ADE cân
b)Chứng minh tam giác ABE = ACD .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ và DA=DE
c: DA=DE
DE<DC
=>DA<DC
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM vuông góc DE
nên AM là phân giác của góc DAE
d: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
a) Xét △ AED có AE=AD nến △AED cân tại A
⇒\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\)
△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC
Xét △DEB và △EDC có :
\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)
ED : cạnh chung
EB=DC \(\left(cmt\right)\)
Do đó : △DEB = △EDC \(\left(c.g.c\right)\)
Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\)
b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\)
Vậy △IBC cân tại I
c) Xét △AIB và △AIC có :
AB=AC(gt)
\(\widehat{ABD}=\widehat{ACE}\) (câu a)
BI=CI(vì △IBC cân tại I)
Do đó :△AIB=△AIC\(\left(c.g.c\right)\)
⇒\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\)
d) Xét △AED và △ABC có :
A : chung
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\)
⇒\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC
Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC
e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC
a, Xét tam giác ABD và tam giác ACE ta có :
^A _ chung
^AB = AC ( gt )
AD = AE ( gt )
Vậy tam giác ABD = tam giác ACE ( g.c.g )
b, => ^ABD = ^ACE ( 2 góc tương ứng )
mà tam giác ABC cân tại => ^B = ^C
=> ^B - ^ABD = ^DBC
=> ^C - ^ACE = ^ECB
=> ^DBC = ^ECB
Xét tam giác IBC có : ^DBC = ^ECB
nên IBC là tam giác cân tại I
c, Xét tam giác ABI và tam giác ACI ta có :
^ABI = ^ACI ( cmt )
AB = AC ( gt)
IA _ chung
Vậy tam giác ABI = tam giác ACI ( c.g.c )
=> ^BAI = ^CAI ( 2 góc tương ứng )
Vậy AI là phân giác ^BAC
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )
mà AI là phân giác của tam giác ABC cân tại A
=> AI đồng thời là đường cao
=> AI vuông BC ; ED // BC (cmt)
=> AI vuông ED
e, Xét tam giác ABC cân tại A
AI là đường cao, phân giác
đồng thời AI là đường trung trực đoạn BC
a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b:
Ta có: BE=BD+DE
CD=CE+ED
mà BD=CE
nên BE=CD
Xét ΔABE và ΔACD có
AB=AC
AE=AD
BE=CD
Do đó: ΔABE=ΔACD