Tính hợp lý:
1/2 - 1/5 + -5/7 + 1/6 - 3/35 + 1/3- - 1/41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{7}{10}\)
= \(\dfrac{-4}{6}+\dfrac{-2}{10}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{7}{10}\)
= \(\dfrac{-3}{2}+\dfrac{1}{2}+\dfrac{3}{4}\)
= (-1) + \(\dfrac{3}{4}\)
= \(\dfrac{-4}{4}+\dfrac{3}{4}\)
= \(\dfrac{-1}{4}\)
b; 0,5 + \(\dfrac{1}{3}\) + 0,4 + \(\dfrac{5}{7}\) + \(\dfrac{1}{6}\) - \(\dfrac{4}{35}\)
= (\(\dfrac{1}{3}\)+ \(\dfrac{1}{6}\) + \(\dfrac{1}{2}\)) + (\(\dfrac{5}{7}\)- \(\dfrac{4}{35}\)+ \(\dfrac{2}{5}\))
= ( \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)) + (\(\dfrac{3}{5}\) + \(\dfrac{2}{5}\))
= 1 + 1
= 2
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{-4}{35}+\dfrac{5}{7}\right)+\dfrac{1}{41}=1+1+\dfrac{1}{41}=\dfrac{83}{41}\)
Giải:
A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20
A=1/2-1/20
A=9/20
D=1/3+1/6+1/12+1/24+1/48
D=1/3+1/2.3+1/3.4+1/4.6+1/6.8
D=1/3+1/2-1/3+1/3-1/4+1/2.(2/4.6+2/6.8)
D=1/3+1/2-1/4+1/2.(1/4-1/6+1/6-1/8)
D=1/3+1/4+1/2.(1/4-1/8)
D=1/3+1/4+1/2.1/8
D=1/3+1/4+1/16
D=31/48
F=0,5-1/3-0,4-4/7-1/6+4/35-1/41
F=1/2-1/3-2/5-4/7-1/6+4/35-1/41
F=1/6-(-6/35)-1/6+4/35-1/41
F=(1/6-1/6)+(6/35+4/35)-1/41
F=0+2/7-1/41
F=2/7+1/41
F=75/287
Chúc bạn học tốt!
\(A=\frac{-2}{9}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{15}+\frac{1}{57}+\frac{1}{3}+\frac{-1}{36}\)
\(A=\left(\frac{-2}{9}+\frac{-3}{4}+\frac{1}{3}+\frac{-1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{57}\)
\(A=\left(\frac{-8}{36}+\frac{-27}{36}+\frac{12}{36}+\frac{-1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{57}\)
\(A=\frac{-2}{3}+\frac{2}{3}+\frac{1}{57}\)
\(A=\frac{-38}{57}+\frac{38}{57}+\frac{1}{57}\)
\(A=\frac{1}{57}\)
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
\(a,\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{13}\\ =\left(31-36\right)+\left(\dfrac{6}{13}-\dfrac{6}{13}\right)+5\dfrac{9}{41}\\ =-5+0+5\dfrac{9}{41}\\ =\left(-5+5\right)+\dfrac{9}{41}=\dfrac{9}{41}\)
\(b,\dfrac{5}{3}+\left(-\dfrac{2}{7}\right)-\left(-1,2\right)\\ =\dfrac{5}{3}-\dfrac{2}{7}+\dfrac{6}{5}\\ =\dfrac{5.35-2.15+6.21}{105}=\dfrac{271}{105}\\ c,0,25+\dfrac{3}{5}-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)=\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{1}{8}+\dfrac{2}{5}-1\dfrac{1}{4}\\ =\left(-1\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{3}{5}+\dfrac{2}{5}\right)-\dfrac{1}{8}=-1+1-\dfrac{1}{8}=-\dfrac{1}{8}\)
a) (31 6/13 + 5 9/41) - 36 6/13
= 409/13 + 214/41 - 474/13
= (409/13 - 474/13) + 214/41
= -5 + 214/41
= 9/41
b) 5/3 + (-2/7) - (-1,2)
= 5/3 - 2/7 + 6/5
= 29/21 + 6/5
= 271/105
c) 0,25 + 3/5 - (1/8 - 2/5 + 1 1/4)
= 1/4 + 3/5 - 1/8 + 2/5 - 5/4
= (1/4 - 5/4) + (3/5 + 2/5) - 1/8
= -1 + 1 - 1/8
= -1/8
A = 6 -2/3 + 1 /2 - 5 -5/3 +3/2 -3 + 7/3 - 5/2
= (6 - 5 - 3) - ( 2/3 -5/3 + 7/3 ) + ( 1/2 +3/2 - 5/2)
= -2 + 0 -1/2 = -5/2
\(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}-\dfrac{3}{35}+\dfrac{1}{3}-\dfrac{-1}{41}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+2+1}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)
\(=\dfrac{6}{6}+\dfrac{-35}{35}+\dfrac{1}{41}=\dfrac{1}{41}\)