Cho tam giác ABC vuông tại A, đường cao AH . Biết AH =4cm , HC= 4HB. Gọi p là chu vi cảu tam giác ABC. Khi đó giá trị của p là ( kết quả làm tròn đến phần nguyên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
HC=3,2(cm)
\(BC=\dfrac{15^2}{9}=25\left(cm\right)\)
BH=25-9=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AB=căn(16^2+12^2)=20cm
C=16+12+20=28+20=48cm
Xét ΔABC vuông tại A có sin B=AC/BC=3/5
nên góc B=37 độ
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Lời giải:
Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$
Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$
$14^2=a.4a$
$4a^2=196$
$a^2=49\Rightarrow a=7$ (do $a>0$)
Khi đó:
$BH=a=7$ (cm); $CH=4a=28$ (cm)
$BC=BH+CH=7+28=35$ (cm)
$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)
Chu vi tam giác $ABC$:
$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)
a: ΔABC vuông tại A
=>BC^2=AB^2+AC^2
=>AB^2=5^2-4^2=9
=>AB=3(cm)
ΔABC vuông tại A có sin B=AC/BC=4/5
nên \(\widehat{B}\simeq53^0\)
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>BH=3^2/5=1,8cm
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow4\cdot HB\cdot HB=4^2\)
\(\Leftrightarrow HB^2=16:4=4\)
hay HB=2(cm)
Ta có: \(AH^2=HB\cdot HC\)(cmt)
nên \(HC=\dfrac{AH^2}{HB}=\dfrac{4^2}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên BC=2+8=10(cm)
Diện tích tam giác ABC là:
\(S_{BAC}=\dfrac{AH\cdot BC}{2}=\dfrac{4\cdot10}{2}=\dfrac{40}{2}=20\left(cm^2\right)\)