Tìm 2 số x và y, biết \(\frac{x}{3}=\frac{y}{5}\)va x + y = 16
Tui Bạch Dương, còn mấy ông, bà cung j ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{7}=\frac{-21}{7}=-3\)
\(\Leftrightarrow\frac{x}{2}=-3\Leftrightarrow x=-6\)
\(\Leftrightarrow\frac{y}{5}=-3\Leftrightarrow y=-15\)
câu b tương tự
C1 : x/3=y/5 =>x=3y/5
=>3y/5+y=16
<=>8y/5=16
=>y=16.5/8=10
=>x=16-10=6
C2: Ta có: x/3 = y/5 = (x+y)/(3+5) = 16/8 = 2 (tính chất dãy tỉ số bằng nhau)
Từ x/3 = 2 => x = 6.
Từ y/5 = 2 => y = 10.
ta có: \(x=\frac{y}{-2}\Rightarrow y=x.\left(-2\right)\))
\(\Rightarrow\frac{5-x}{x.\left(-2\right)+2}=-\frac{3}{2}\)
=> 10 - 2x = x.(-6) + 6
=> -2x + x.6 = 6 - 10
4x = -4
x = -1
=> y = x.(-2) => y = (-1).(-2) => y = 2
KL:...
theo dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
=> \(\frac{x}{2}=-3\Rightarrow x=-3.2=-6\)
=> \(\frac{y}{5}=-3\Rightarrow y=-3.5=-15\)
áp dụng tính chất dãy tỉ số bằng nhau
ta có:\(\frac{x}{2}\)=\(\frac{y}{5}\)=\(\frac{x+y}{2+5}\)\(\frac{-21}{7}\)=-3
Do đó:\(\frac{x}{2}\)=-3x2=-6
\(\frac{y}{5}\)=-3x5=-15
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
ta có
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)
\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)
từ đó bạn tính ra nha
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)
Áp dụng tinh chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)
\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)
Vậy .......
Mong bạn thông cảm cho . Dấu " / " là phân số nhé !
x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16
=> x/2 = y/3 <=> x/8 = y/12 (1)
y/4 = z/5 <=> y/12 = z/15 (2)
Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16
=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2
=> x/8 = 2 => x = 16
y/12 = 2 => y = 24
z/15 = 2 => z = 30
Vậy x = 16
y = 24
z = 30
Chúc bạn học tốt !
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.5=10\)
Vậy x = 6 và y = 10
Ta có : \(\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x}{3}=3.2=6\)
\(\Rightarrow\frac{x}{5}=5.2=10\)
Vậy x = 6 và y = 10
\(\frac{x}{3}\)= \(\frac{y}{5}\) và x + y = 16
Áp dụng tính chất dãy tỉ bằng nhau ta có:
\(\frac{x}{3}\)= \(\frac{y}{5}\)=\(\frac{x+y}{3+5}\)= \(\frac{16}{8}\)=2
Suy ra : \(\frac{x}{3}\)= 2\(\Rightarrow\)x=6
\(\frac{y}{5}\)= 2\(\Rightarrow\)y=10
Vậy...
x=6
y=5