K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 1

Từ điểm O, ‘‘thu nhỏ’’ hai lần tứ giác ABCD, ta sẽ nhận được tứ giác A’B’C’D’.

Chọn A

Xét hình thang ABCD có EF//AB//CD

nên AE/AD=BF/BC(1)

Xét ΔADC có EO//DC
nên EO/DC=AE/AD(2)

Xét ΔBDC có OF//DC

nên OF/DC=BF/BC(3)

Từ (1), (2) và (3) suy ra OE=OF

HQ
Hà Quang Minh
Giáo viên
28 tháng 1

Từ điểm O, ‘‘phóng to’’ ba lần tam giác ABC, ta sẽ nhận được tam giác A’B’C’.

1 tháng 1 2022

Áp dụng định lí Ta lét đảo ta có:

\(\dfrac{OD}{OA}=\dfrac{OE}{OB}=\dfrac{OF}{OC}=\dfrac{1}{4}\Rightarrow DE\text{//}AB;EF\text{//}BC;DF\text{//}AC\\ \Rightarrow\dfrac{DE}{AB}=\dfrac{EF}{BC}=\dfrac{DF}{AC}=\dfrac{OD}{OA}=\dfrac{1}{4}\\ \Rightarrow\Delta ABC\sim\Delta DEF\left(c.c.c\right)\)

Tỉ số đồng dạng là: \(\dfrac{DE}{AB}=\dfrac{1}{4}\)

NV
12 tháng 11 2018

Bạn ghi nhầm đề thì phải, tự nhiên ban đầu có BC+CB, chắc là BC+CD

Sử dụng BĐT tam giác cho các tam giác OAB, OBC, OCD, OAD ta có:

OA+OB>AB; OB+OC>BC; OC+OD>CD; OA+OD>AD

Cộng vế với vế ta được:

2(OA+OB+OC+OD)>AB+BC+CD+AD

\(\Rightarrow OA+OB+OC+OD>\dfrac{AB+BC+CD+AD}{2}\) (1)

Tương tự, sử dụng BĐT tam giác cho các tam giác ABC, BCD, CDA, DAB ta có:

AB+BC>AC=OA+OC

BC+CD>BD=OB+OD

CD+AD>AC=OA+OC

DA+AB>BD=OB+OD

Cộng vế với vế các BĐT trên ta được:

\(2\left(AB+BC+CD+AD\right)>2\left(OA+OB+OC+OD\right)\)

\(\Rightarrow AB+BC+CD+AD>OA+OB+OC+OD\) (2)

Từ (1) và (2) ta có đpcm

12 tháng 11 2018

Hình bạn vẽ nha bạn.

Áp dụng bất đẳng thức tam giác, ta có:

\(AB< OA+OB\)

\(BC< OB+OC\)

\(CD< OC+OD\)

\(DA< OD+OA\)

Do đó: \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)

Hay \(OA+OB+OC+OD>\dfrac{AB+BC+CD+DA}{2}\)(1)

Ta lại áp dụng bất đẳng thức tam giác:

\(AB+BC>AC\)

\(BC+CD>BD\)

\(CD+AD>AC\)

\(AB+AD>BD\)

Do đó: \(2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\)

Hay \(AB+BC+CD+DA>OA+OB+OC+OD\)(2)

Từ (1) và (2) ta suy ra:

\(\dfrac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+DA\)

Bạn ghi sai cái đề chỗ \(\dfrac{AB+BC+CB+AD}{2}\) nha

1 tháng 9 2019

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) Trước hết, điều kiện cần và đủ để tứ giác ABCD là hình bình hành là: Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1).

+) Với mọi điểm O bất kì khác A, B, C, D ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Vậy điều kiện cần và đủ để tứ giác ABCD là hình bình hành là: 

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

2 tháng 8 2017

A B C A' B' C' O H

a) kẻ đường cao AH.Dễ thấy \(\dfrac{OA'}{AA'}=\dfrac{S_{BOC}}{S_{ABC}}\).Tương tự ta có:

\(\dfrac{OB'}{BB'}=\dfrac{S_{AOC}}{S_{ABC}};\dfrac{OC'}{CC'}=\dfrac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\dfrac{OA'}{AA'}+\dfrac{OB'}{BB'}+\dfrac{OC'}{CC'}=\dfrac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\left(QED\right)\)

b)Theo câu a:

\(\left(1-\dfrac{OA'}{AA'}\right)+\left(1-\dfrac{OB'}{BB'}\right)+\left(1-\dfrac{OC'}{CC'}\right)=3-1\)

\(\Rightarrow\dfrac{OA}{AA'}+\dfrac{OB}{BB'}+\dfrac{OC}{CC'}=2\)

c)Chứng minh \(\dfrac{OA}{OA'}+\dfrac{OB}{OB'}+\dfrac{OC}{OC'}\ge6\)

\(\Leftrightarrow\dfrac{AA'}{OA'}+\dfrac{BB'}{OB'}+\dfrac{CC'}{OC'}\ge9\)

có:\(\dfrac{AA'}{OA'}=\dfrac{S_{ABC}}{S_{BOC}}\)( theo câu a)

tương tự và cộng lại:\(M=\dfrac{AA'}{OA'}+\dfrac{BB'}{OB'}+\dfrac{CC'}{OC'}=S_{ABC}\left(\dfrac{1}{S_{BOC}}+\dfrac{1}{S_{AOC}}+\dfrac{1}{S_{AOB}}\right)\ge\dfrac{9S_{ABC}}{S_{BOC}+S_{AOB}+S_{AOC}}=\dfrac{9S_{ABC}}{S_{ABC}}=9\)

( BĐT AM-GM)

Dấu = xảy ra hay M nhỏ nhất khi O là trọng tâm của tam giác ABC

d) có: \(\dfrac{AA'}{OA'}=\dfrac{S_{ABC}}{S_{BOC}}\Rightarrow\dfrac{AA'-OA'}{OA'}=\dfrac{S_{ABC}-S_{BOC}}{S_{BOC}}\)

\(\Rightarrow\dfrac{OA}{OA'}=\dfrac{S_{AOC}+S_{AOB}}{S_{BOC}}\)

Tương tự và nhân lại:

\(N=\dfrac{OA}{OA'}.\dfrac{OB}{OB'}.\dfrac{OC}{OC'}=\dfrac{\left(S_{AOC}+S_{AOB}\right)\left(S_{BOC}+S_{AOB}\right)\left(S_{BOC}+S_{AOC}\right)}{S_{AOB}.S_{AOC}.S_{BOC}}\)

Đặt \(\left(S_{BOC};S_{AOB};S_{AOC}\right)\rightarrow\left(a,b,c\right)\)

Thì \(N=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Theo AM-GM:\(N\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}{abc}=\dfrac{8abc}{abc}=8\)

Dấu = xảy ra khi O là trọng tâm của tam giác ABC

11 tháng 8 2017

Hoang Hung Quan;d cái đó avata đủ hiểu r mà ;d