K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1

Lời giải:
ĐKXĐ: $x\neq -1; x\neq 0; x\neq 2$

\(Q=1+\left[\frac{x+1}{(x+1)(x^2-x+1)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2(x-2)}{x(x^2-x+1)}\)

\(=1+\left[\frac{1}{x^2-x+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right].\frac{x^2-x+1}{x-2}\)

\(=1+(\frac{2}{x^2-x+1}-\frac{2}{x+1}).\frac{x^2-x+1}{x-2}\\ =1+\frac{2}{x-2}-\frac{2(x^2-x+1)}{(x+1)(x-2)}=\frac{x}{x-2}-\frac{2x^2-2x+2}{(x+1)(x-2)}\)

\(=\frac{x(x+1)-(2x^2-2x+2)}{(x+1)(x-2)}=\frac{-x^2+3x-2}{(x+1)(x-2)}=\frac{(1-x)(x-2)}{(x+1)(x-2)}=\frac{1-x}{1+x}\)

26 tháng 5 2018

1:

A = \(\dfrac{2}{x^2-1}-\dfrac{1}{x^2+x}+\dfrac{x^2-3}{x^3-x}\)

= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}+\dfrac{x^2-3}{x\left(x^2-1\right)}\)

= \(\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{x^2-3}{x\left(x-1\right)\left(x+1\right)}\)

= \(\dfrac{2x-x+1+x^2-3}{x\left(x-1\right)\left(x+1\right)}\)

= \(\dfrac{x^2+x-2}{x\left(x-1\right)\left(x+1\right)}\)

7 tháng 6 2023

` @ \color{Red}{m}`

` \color{lightblue}{Answer}`  

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x}{x+1}\)

__

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-\left(2x-6\right)}{2x\left(x+3\right)}\\ =\dfrac{3x-2x+6}{2x\left(x+3\right)}\\ =\dfrac{x+6}{2x\left(x+3\right)}\)

__

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\\ =\dfrac{1}{1-x}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1}{1+x}\)

7 tháng 6 2023

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\left(dkxd:x\ne\pm1\right)\)

\(=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x+1}\)

========================

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\left(dkxd:x\ne\pm3;x\ne0\right)\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)

\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x+6}{2x^2+6x}\)

==========================

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\left(dkxd:x\ne\pm1\right)\)

\(=-\dfrac{1}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-\left(x+1\right)+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-1+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}\)

8 tháng 1 2018

\(=\left[\left(\dfrac{1}{x^2}+\dfrac{x^2}{x^2}\right).\dfrac{1}{\left(1+x\right)^2}+\left(\dfrac{x}{x}+\dfrac{1}{x}\right).\dfrac{2}{\left(1+x\right)^3}\right]:\dfrac{x-1}{x^3}\)

Cứ tiếp tục nhân rồi cộng lại như thế nồi ra kq thôi mà !!!

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

1 tháng 6 2018

rảnh vãi

a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)

\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)

\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)

\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)

c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)

\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)