K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1^2+1^2\right)\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2.1+b^2.1\right)\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Áp dụng bất đẳng thức Bunhiacopxki lần nữa ta có :

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a.1+b.1\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\) (2)

Từ (1) và (2) \(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{2^2}{2}=2\)(đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

26 tháng 8 2017

Có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

<=> \(2x^2+2y^2\ge\left(x+y\right)^2=x^2+2xy+y^2\)

<=> \(x^2-2xy+y^2\ge0\) (đúng)

Vậy \(a^4+b^4\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

dấu "=" xảy ra <=> a = b = 1

NV
14 tháng 4 2021

\(\Leftrightarrow\dfrac{a}{\sqrt{4b^2+bc+4c^2}}+\dfrac{b}{\sqrt{4c^2+ca+4a^2}}+\dfrac{c}{\sqrt{4a^2+ab+4b^2}}\ge1\)

Ta có:

\(\sum\left(\dfrac{a}{\sqrt{4b^2+bc+4c^2}}\right)^2\sum a\left(4b^2+bc+4c^2\right)\ge\left(a+b+c\right)^3\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^3}{a\left(4b^2+bc+4c^2\right)+b\left(4c^2+ac+4a^2\right)+c\left(4a^2+ab+4b^2\right)}\ge1\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^3}{4a\left(b^2+c^2\right)+4b\left(c^2+a^2\right)+4c\left(a^2+b^2\right)+3abc}\ge1\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đúng theo Schur bậc 3)

27 tháng 3 2018

Áp dụng BĐT   Bunyakovsky   ta có:

      \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)       

\(\Leftrightarrow\)\(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)     (1)            (chỗ này mk bình phương 2 vế nên nhé)

Dấu "="   xảy ra   \(\Leftrightarrow\)  \(a=b=1\)

Áp dụng BĐT   Bunyakovsky   ta có:

    \(\left(a^2+b^2\right)^2\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow\)\(4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\)    (2)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=1\)

Từ (1) và (2) suy ra:    \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)

                         \(\Leftrightarrow\)\(16\le8\left(a^4+b^4\right)\)

                        \(\Leftrightarrow\)  \(a^4+b^4\ge2\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=1\)

P/S: trình bày sai chỗ nào thì m.n góp ý nha

2 tháng 5 2019

đặt a2+4 là x; b2+5 là y

ta có \(\frac{a^2+4}{b^2+5}+\frac{b^2+5}{a^2+4}\ge2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x^2+y^2}{xy}\ge2\)

⇔ x2 + y2 ≥ 2xy

⇔ x2 - 2xy + y2 ≥ 0

⇔ ( x - y )2 ≥ 0 (luôn luôn đúng )

vậy \(\frac{a^2+4}{b^2+5}+\frac{b^2+5}{a^2+4}\ge2\)

31 tháng 12 2015

hả?

bài để thi hok kì I đó hả? đúng khó *_*

mk sẽ ghi lại để sau này mk hok

31 tháng 12 2015

câu hỏi tương tự ko có đâu

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
6 tháng 5 2017

BĐT cần chứng minh tương đương \(a^4+b^4+c^4\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)-abc\left(a+b+c\right)\)

mà \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)(BĐT cauchy)

\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(cần chứng minh)

ÁP dụng bất đẳng thức bunyakovsky:

\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)

mà \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)(hệ quả BĐT cauchy)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(đpcm)

dấu = xảy ra khi a=b=c

7 tháng 5 2017

Trái dấu bất đẳng thức rồi kìa