K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2024

\(\left\{{}\begin{matrix}108u+63v=7\\81u+84v=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}432u+252v=28\\243u+252v=21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}89u=7\\81u+84v=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{7}{89}\\v=\left(7-81.\dfrac{7}{89}\right):84\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{7}{89}\\v=\dfrac{2}{267}\end{matrix}\right.\)

27 tháng 12 2021

\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)

AH
Akai Haruma
Giáo viên
20 tháng 1 2024

Câu 1: 

Lấy PT(1) + PT(2) theo vế thu được:

$3x+y+(2x-y)=10$

$\Leftrightarrow 5x=10$

$\Leftrightarrow x=2$

$y=2x-7=2.2-7=-3$

Vậy hpt có nghiệm $(x,y)=(2,-3)$

Câu 2: 

Lấy PT(1) - PT(2) theo vế thì:

$(2x+5y)-(2x-3y)=8$

$\Leftrightarrow 8y=8$

$\Leftrightarrow y=1$

Khi đó: $x=3y:2=\frac{3}{2}$
Vậy.............

Câu 3:

Lấy PT(1) - 2PT(2) thu được:

$(4x+3y)-2(2x+y)=6-2.4$

$\Leftrightarrow y=-2$

Khi đó:

$2x=4-y=6$

$\Leftrightarrow x=3$

Vậy..........

1)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-1;2\right)\)

2)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

3)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

4) 

HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

 

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

AH
Akai Haruma
Giáo viên
31 tháng 1 2024

Câu 1:

Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):

$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$

$\Leftrightarrow 9y^2-42y+48=0$

$\Leftrightarrow (y-2)(9y-24)=0$

$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$

Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 1 2024

Câu 3: Bạn xem lại PT(2) là -x+y đúng không?

Câu 4:

$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$

$\Leftrightarrow 3^3-9xy=7$

$\Leftrightarrow xy=\frac{20}{9}$

Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:

$X^2-3X-\frac{20}{9}=0$

$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị

$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.

 

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

NV
27 tháng 3 2021

a.

Thay số 12 từ pt trên xuống dưới:

\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)

Thế vào pt đầu:

\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

NV
27 tháng 3 2021

b.

Thế số 1 từ pt trên xuống dưới:

\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow x^4y^3+x^3y^4=0\)

\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)

Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)

19 tháng 3 2021

a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$

để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$

NV
29 tháng 1 2021

Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)

So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)

\(\Leftrightarrow m=3\)

29 tháng 1 2021

cụ thể đc kh bn