với a,b,c là các số thực thỏa mãn a^3+b^3+c^3=4abc và ab+2bc+3ca=0, chứng minh rằng a=b=c=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:
ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).
Trả lời
Theo đề ra ta có:
a+b+c=0
\(\Rightarrow\)ab+2ab+3ac=-a(a+c)-2c(a+c)+3ac
=\(-a^2-ac-2ac-2ac^2+3ac\)
\(=-\left(a^2+2c^2\right)\le0\)
Vậy nếu a+b+c=0 thì \(ab+2bc+3ac\le0\left(đpcm\right)\)
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Giải:
\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}b+c=-a\\a+b=-c\end{matrix}\right.\)
\(\Rightarrow ab+2bc+3ca\)
\(=ab+ca+2bc+2ca\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=a\left(-a\right)+2c\left(-c\right)\)
\(=-a^2-2c^2\le0\)
Vậy \(ab+2bc+3ca\le0\) (Đpcm)
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0