K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Chọn C.

 

 nên

Gọi M, N, P lần lượt là trung điểm của BC, CA, AB

Tam giác ABM đều nên 

Theo định lý Pitago ta có:

Suy ra

NV
3 tháng 12 2021

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)

24 tháng 9 2017

* cái này là công thức rồi bn o cần chứng minh đâu

công thức : cho tam giác ABC ; nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

13 tháng 10 2022

Gọi M trung điểm BC

       G đối xứng D qua M

=> tứ giác BGCD là hình bình hành

=> GD=2.GM (Hình bình hành có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) 

Mà AG = 2.GM ( \(\dfrac{AG}{GM}=\dfrac{2}{1},GA=\dfrac{2}{3}AM\) )

⇒ AG=GD

Mặt khác, G ϵ AD 

\(\overrightarrow{AG}=\overrightarrow{GD}\)

Ta có \(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\) (Quy tắc hình bình hành)

Nên \(\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}\) = \(\overrightarrow{GD}+\overrightarrow{GA}\)   

Mà \(\overrightarrow{AG}=\overrightarrow{GD}\) (cmt)

\(\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{AG}-\overrightarrow{AG}=\overrightarrow{O}\)

 

22 tháng 10 2023

a: Gọi M là trung điểm của AB

Xét ΔABC có

G là trọng tâm

M là trung điểm của AB

Do đó: CG=2/3CM

=>CG=2GM

=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)

\(=2\overrightarrow{GM}+\overrightarrow{GC}\)

\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)

b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3\cdot\overrightarrow{MG}\)

a: AD=BE=CF=8*căn 3/2=4*căn 3(cm)

CG=2/3*4*căn 3=8/3*căn 3(cm)

b: Vì ΔABC đều có G là trọng tâm

nên G là tâm đường tròn ngoại tiếp

=>GA=GB=GC

6 tháng 10 2020

mk bận đi ch nên chỉ tạm câu a nha 

vẽ 3 đường trung tuyến AD ; BE ; CF 

VT = 

\(GA+GB+GC\)   ( nhớ thêm dấu vec tơ nha ) 

\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)  

\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\)     ( quy tắc hình bình hành ) 

\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\) 

\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)    

\(=0=VP\)

6 tháng 10 2020

.... chua hoc