1) Chứng minh rằng :
a) 432004 + 432005 chia hết cho 11
b) 273 + 95 chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(34^{2005}-34^{2004}\)
\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)
b) Ta có: \(43^{2004}+43^{2005}\)
\(=43^{2004}\left(1+43\right)\)
\(=43^{2004}\cdot44⋮11\)
c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)
Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿
Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31
=> 25﴾x+7y﴿ chia hết cho 31
Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿
Nên x+7y chia hết cho 31
Vậy ...
1) Xét hiệu:
6 x (a+7b)-(6a+11b)
= 6a+42b-6a-11b
=31b
Vs b thuộc N thì 31b chia hết cho 31
=>6 x (a+7b)-(6a+11b) chia hết cho 31
Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31
=>6a+11b chia hết cho 31
a; a - b ⋮ 6
a - b + 12b ⋮ 6
a + 11b ⋮ 6 (đpcm)
b; a - b ⋮ 6
a - b - 12a ⋮ 6
-11a - b ⋮ 6
-(11a + b) ⋮ 6
11a + b ⋮ 6 (đpcm)
Ta có:
a) a+3b=(a+b)+2b
Vì a+b chia hết cho 2 và 2b chia hết cho 2 =>a+3b chia hết cho 2
b) 5a+11b=(4a+10b)+(a+b)=2(2a+5b)+(a+b)
Vì 2(2a+5b) chia hết cho 2 và a+b chia hết cho 2 => 5a+11b chia hết cho 2
Vì a-b chia hết cho 6
nên (a-bchia hết cho 6
=>> a+5a chia hết cho 6
Vì a-b chia hết cho 6 nên 5(a-b)=5a-5b chia hết cho 6.
Mà 6b chia hết cho 6 với mọi số nguyên b.
Do vậy 5a-5b-6b chia hết cho 6 => 5a - 11b chia hết cho 6 (đpcm).
a)\(43^{2004}+43^{2005}\)
\(=43^{2004}+43^{2004}.43\)
\(=43^{2004}.\left(1+43\right)\)
\(=43^{2004}.44\)
\(=43^{2004}.4.11\)chia het cho 11
b)\(27^3+9^5\)
\(=3^9+3^{10}\)
\(=3^9\left(1+3\right)\)
\(=3^9.4\)chia het cho 4
a)
Ta có :
A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44
Có : 44 \(⋮\)11
=> A chia hết cho 11
=> ĐPCM
b)
Ta có :
B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4
Có :
4\(⋮\)4
=> B \(⋮\)4
=> ĐPCM
nha !!!