Tìm hai số tự nhiên a, b sao cho Tổng của ƯCLN và BCNN là 15.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) goi hai so la a ; b va a >b
vi UCLN(a,b)=18=>a=18k ; b=18q (trong do UCLN (k,q)=1 va k>q)
=>a+b=162
18k+18q =162
18(k+q)=162
k+q=9
ta co bang sau | |||||||||||||||||||||||
vay ........... | |||||||||||||||||||||||
21453
52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000 |
Lời giải:
Gọi $ƯCLN(a,b)=d$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó:
$ƯCLN(a,b)+BCNN(a,b)=d+dxy=15$
$\Rightarrow d(1+xy)=15$
$\Rightarrow 15\vdots d\Rightarrow d\in \left\{1; 3; 5; 15\right\}$
Nếu $d=1\Rightarrow 1+xy=15$
$\Rightarrow xy=14\Rightarrow (x,y)=(1,14), (2,7), (7,2), (14,1)$ do $x,y$ nguyên tố cùng nhau.
$\Rightarrow (a,b)=(dx,dy)=(1,14), (2,7), (7,2), (14,1)$
Nếu $d=3\Rightarrow 1+xy=5$
$\Rightarrow xy=4\Rightarrow (x,y)=(1,4), (4,1)$ do $x,y$ nguyên tố cùng nhau
$\Rightarrow (a,b)=(dx,dy)=(3,12), (12,3)$
Nếu $d=5$ thì $1+xy=3\Rightarrow xy=2\Rightarrow (x,y)=(1,2), (2,1)$
$\Rightarrow (a,b)=(5,10)< (10,5)$
Nếu $d=15$ thì $1+xy=1\Rightarrow xy=0$ (vô lý - loại)
Vậy..............