1/2\(^x\) + 2\(^{x+3}\) = 14
2/5\(^{x+1}\) +5\(^{x+2}\) 16 250
3/25\(\le\) 5\(^x\) < 3125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{10^6\times10^2}{1000^3}=\dfrac{10^{6+2}}{\left(10^3\right)^3}=\dfrac{10^8}{10^9}=\dfrac{1}{10}\)
b)\(\dfrac{625^2\times57\times3125}{25}=\dfrac{\left(5^4\right)^2\times5^5\times57}{5^2}=\dfrac{5^{13}\times57}{5^2}=5^{11}\times57\)
Bài 2 :
a) (x - 5)5 = (x - 5)10
⇒ x - 5 = 0 hoặc x - 5 = 1
⇒ x ∈ {5 ; 6}
a) \({2^x} > 16 \Leftrightarrow {2^x} > {2^4} \Leftrightarrow x > 4\) (do \(2 > 1\)) .
b) \(0,{1^x} \le 0,001 \Leftrightarrow 0,{1^x} \le 0,{1^3} \Leftrightarrow x \ge 3\) (do \(0 < 0,1 < 1\)).
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {{{\left( {\frac{1}{5}} \right)}^2}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{5}} \right)^{2x}} \Leftrightarrow x - 2 \le 2{\rm{x}}\) (do \(0 < \frac{1}{5} < 1\))
\( \Leftrightarrow x \ge - 2\).
bài 2
A = 3+3^2 +3^3+ ...+3^100
3.A = 3^2+3^3+3^4+...+3^101
3.A-A=(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+...+3^100)
2.A=3^101-3
Ta có: 2A+3=3^ x
\(\Rightarrow\)(3^101-3)+3=3^x
\(\Rightarrow\)3^101-(3+3)=3^x
\(\Rightarrow\)3^101=3^x
\(\Rightarrow\)x=101
Vậy x=101
1:
=>2x-3=0 hoặc 5/2-x=0
=>x=3/2 hoặc x=5/2
2: =>x=1/2+12=12,5
3: =>(2x+3/5-3/5)(2x+3/5+3/5)=0
=>2x(2x+6/5)=0
=>x=0 hoặc x=-3/5
4: =>-1/6x=-1/3
=>x=1/3:1/6=2
5: =>1/4:x=1/4
=>x=1
6: =>2/5x+11/15=1
=>2/5x=4/15
=>x=2/3
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)