K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

Chào mai xinh đẹp 

1<=>( x-4)/2009 -1 +( x-3)/2010-1 -(x-2)/2011-1-(x-1)/2012-1=0
<=> (x-2013)/2009+ (x-2013)/2010-(x-2013)/2011-(x-2013)/2012=0
<=> (x-2013)( 1/2009+1/2010-1/2011-1/2012)=0
=> x-2013=0=> x=2013

pp mai

25 tháng 8 2017

Cảm ơn nhiều nha! Nhưng tên mình không phải Mai !!!

20 tháng 1 2017

2011 + 2010 + 2009 + ... + x = 2011

<=> 2011+ 2010 + 2009 +......+ 0 + (-1) + (-2) + (-3)+.......+ x -2011 = 0 
<=> x = -2010

6 tháng 6 2016

\(\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{2008-2008}\)

\(=\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{0}\)

Sau đó QĐM(bạn tự QĐ nha)

\(=\frac{0}{0}+\frac{0}{0}+...+\frac{5016}{0}\)

\(=\frac{5016}{0}=0\)

\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=0\)

Mà \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\ne0\)

\(\Rightarrow x=0\)

21 tháng 6 2016

Ta có:

\(\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)

\(\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)

\(\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

\(x=-2012\)

21 tháng 6 2016

;Ko tồn tại nghiệm số thực OK

24 tháng 8 2016

Aj giải giúp tui với.....! :-(

26 tháng 8 2016

k biet nen k tra loi

27 tháng 8 2016

tham khảo Câu hỏi của Đỗ Thu Hà - Toán lớp 9 - Học toán với OnlineMath

14 tháng 3 2016

\(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)\(\Leftrightarrow\)\(\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+1}{2012}+1\right)\)

\(=\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\)

Biểu thức trên chi thỏa mãn khi x+2013=0

\(\Rightarrow x=-2013\)

14 tháng 3 2016

mk nghĩ là -2013 vì nếu thay x=-2013 vào thì các phân số sẽ bằng -1.

nếu cộng lại thì đc -2

k nhé

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

10 tháng 7 2016

(2008 x 2009 x 2010 x 2011) x (1 + 1/2 : 3/2 - 4/3)

=(2008 x 2009 x 2010 x 2011) x (1 + 1/3 - 4/3)

=(2008 x 2009 x 2010 x 2011) x (4/3 - 4/3)

=(2008 x 2009 x 2010 x 2011) x 0

=0

10 tháng 7 2016

đáp số:0

ủng hộ nha