Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x nguyên để biểu thức sau nhận giá trị nguyên.
B = \(\dfrac{2x^3+5x^2-5x+5}{2x+1}\)
Lời giải:
$B=\frac{x^2(2x+1)+2x(2x+1)-3(2x+1)-x+8}{2x+1}$
$=\frac{(2x+1)(x^2+2x-3)+8-x}{2x+1}=x^2+2x-3+\frac{8-x}{2x+1}$
Với $x$ nguyên, để $B$ nguyên thì $\frac{8-x}{2x+1}$ nguyên
Với $8-x, 2x+1$ là số nguyên thì điều này xảy ra khi $8-x\vdots 2x+1$
$\Rightarrow 2(8-x)\vdots 2x+1$
$\Rightarrow 17-(2x+1)\vdots 2x+1$
$\Rightarrow 17\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 17\right\}$
$\Rightarrow x\in \left\{0; -1; 8; -9\right\}$ (thỏa mãn)
Lời giải:
$B=\frac{x^2(2x+1)+2x(2x+1)-3(2x+1)-x+8}{2x+1}$
$=\frac{(2x+1)(x^2+2x-3)+8-x}{2x+1}=x^2+2x-3+\frac{8-x}{2x+1}$
Với $x$ nguyên, để $B$ nguyên thì $\frac{8-x}{2x+1}$ nguyên
Với $8-x, 2x+1$ là số nguyên thì điều này xảy ra khi $8-x\vdots 2x+1$
$\Rightarrow 2(8-x)\vdots 2x+1$
$\Rightarrow 17-(2x+1)\vdots 2x+1$
$\Rightarrow 17\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 17\right\}$
$\Rightarrow x\in \left\{0; -1; 8; -9\right\}$ (thỏa mãn)