Cho ABC cân tại A. Lấy M, N thuộc BC sao cho BM = NC = MN
1) Chứng minh rằng : AM < AC. 2) Từ C kẻ Cx // AM cắt AN kéo dài tại D. Chứng minh rằng : BAM< MAN Mình đang gấp mong mọi người làm nhanh giúp mìnhHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có
\(\widehat{ABC}=\widehat{ACB}\) (2 góc ở đáy của tg cân ABC) (1)
\(\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}=180^o\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\) và \(\Delta ACN\) có
AB=AC (cạnh bên của tg cân ABC)
BM=CN (gt)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A
b/
Xét tg vuông BME và tg vuông CNF có
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\Rightarrow\widehat{AMN}=\widehat{ANM}\) (2 góc ở đáy của tg cân AMN)
BM=CN (gt)
\(\Rightarrow\Delta BME=\Delta CNF\) (Hai tg vuông có cạnh huyền và một góc nhọn tương ứng = nhau thì bằng nhau)
c/
Xét tg cân AMN có AM=AN (1)
\(\Delta BME=\Delta CNF\left(cmt\right)\Rightarrow ME=NF\) (2)
Từ (1) và (2) => AM-ME=AN-NF => AE=AF
Xét tg vuông AEO và tg vuông AFO có
AE=AF (cmt)
AO chung
\(\Rightarrow\Delta AEO=\Delta AFO\) (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau thì bằng nhau)
\(\Rightarrow\widehat{OAE}=\widehat{OAF}\) => AO là phân giác của \(\widehat{MAN}\)
d/
Ta có
\(\widehat{HMN}=\widehat{HMA}-\widehat{AMN}=90^o-\widehat{AMN}\)
\(\widehat{HNM}=\widehat{HNA}-\widehat{ANM}=90^o-\widehat{ANM}\)
Mà \(\widehat{AMN}=\widehat{ANM}\)
\(\Rightarrow\widehat{HMN}=\widehat{HNM}\Rightarrow\Delta HMN\) cân tại H
Ta có
\(OE\perp AM;HM\perp AM\)=> OE//HM \(\Rightarrow\widehat{AOE}=\widehat{AHM}\) (góc đồng vị)
Chứng minh tương tự ta cũng có OF//HN \(\Rightarrow\widehat{AOF}=\widehat{AHN}\) (góc đồng vị)
Mà \(\Delta AEO=\Delta AFO\Rightarrow\widehat{AOE}=\widehat{AF}\)
\(\Rightarrow\widehat{AHM}=\widehat{AHN}\)=> HO là phân giác của \(\widehat{MHN}\)
Xét tg cân HMN có
HO là phân giác của \(\widehat{MHN}\)=> HO là đường trung trực của tg HMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(HO\perp MN\) tại trung điểm của MN
Xét tg cân AMN có
AO là đường phân giác của \(\widehat{MAN}\) (cmt) => AO là đường trung trực của tg AMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(AO\perp MN\) tại trung điểm của MN
=> AO trung HO (Từ 1 điểm trên đường thẳng chỉ duy nhất dựng được 1 đường thẳng vuông góc với đường thẳng đã cho)
=> A; O; H thẳng hàng
(Bạn tự vẽ hình giùm)
a/ \(\Delta AMB\)và \(\Delta ANC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
MB = NC (gt)
=> \(\Delta AMB\)= \(\Delta ANC\)(c - g - c) => AM = AN (hai cạnh tương ứng) (đpcm)
\(\Delta AHB\)và \(\Delta AHC\)có: AB = AC (\(\Delta ABC\)cân tại A)
BH = HC (H là trung điểm của BC)
Cạnh AH chung
=> \(\Delta AHB\)= \(\Delta AHC\)(c - c - c) => \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}\)= 180o (kề bù)
=> \(2\widehat{AHB}=180^o\)
=> \(\widehat{AHB}=90^o\)
=> \(AH\perp BC\)(đpcm)
b/ \(\Delta AHM\)vuông và \(\Delta AHN\)vuông có: AM = AN (cm câu a)
Cạnh AH chung
=> \(\Delta AHM\)vuông = \(\Delta AHN\)vuông (cạnh huyền - cạnh góc vuông) => HM = HN (hai cạnh tương ứng) => H là trung điểm MN
Ta có HB = HC = \(\frac{BC}{2}=\frac{6}{2}\)= 3 (cm)
và \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lý Pitago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 32
=> AH2 = 25 - 9
=> AH2 = 16
=> AH = \(\sqrt{16}\)(vì AH > 0)
=> AH = 4 (cm)
Ta lại có BM = MN = NC (gt)
Mà BM + MN + NC = BC
=> 3BM = 6
=> BM = MN = NC = 2
=> HM = HN = 1
và \(\Delta AHM\)vuông tại H => AM2 = AH2 + MH2 (định lý Pitago)
=> AM2 = 42 + 12
=> AM2 = 16 + 1
=> AM2 = 17
=> AM = \(\sqrt{17}\)(cm) (vì AM > 0)
a: Xét ΔBAM và ΔCAP có
BM=CP
BA=CA
AM=AP
=>ΔBAM=ΔCAP
=>góc BAM=góc CAP
=>góc BAM+góc MAN=góc CAP+góc MAN
=>góc MAN<góc NAP
b: Xét ΔMAN và ΔQAN co
AM=AQ
góc MAN=góc QAN
AN chung
=>ΔMAN=ΔQAN
=>NM=NQ
mà NP>NM
nên NP>NQ