K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 1

Lời giải:

b/ $n^2+2n-3\vdots n+1$

$\Rightarrow n(n+1)+(n+1)-4\vdots n+1$

$\Rightarrow 4\vdots n+1$

$\Rightarrow n+1\in \left\{\pm 1; \pm 2; \pm 4\right\}$

$\Rightarrow n\in \left\{0; -2; 1; -3; 3; -5\right\}$

c/

$3n-1\vdots n-2$

$\Rightarrow 3(n-2)+5\vdots n-2$

$\Rightarrow 5\vdots n-2$

$\Rightarrow n-2\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow n\in \left\{3; 1; 7; -3\right\}$

d.

$3n+1\vdots 2n-1$

$\Rightarrow 2(3n+1)\vdots 2n-1$

$\Rightarrow 6n+2\vdots 2n-1$

$\Rightarrow 3(2n-1)+5\vdots 2n-1$

$\Rightarrow 5\vdots 2n-1$

$\Rightarrow 2n-1\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow n\in \left\{0; 1; 3; -2\right\}$ (thỏa mãn)

NV
7 tháng 2 2021

\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)

\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)

\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)

\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)

26 tháng 9 2019

phân tích đa thức thành nhân tử

26 tháng 9 2019

 Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào

17 tháng 1 2021

Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy

\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)

NV
6 tháng 2 2021

\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)

\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)

6 tháng 2 2021

thưa thầy câu 1 nếu rút căn n ra thì lm thế nào ạ

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

11 tháng 2 2022

\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)

\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)

11 tháng 2 2022

\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)

\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)

\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)

16 tháng 2 2021

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

16 tháng 2 2021

không thích coi rồi sao kh :D 

5 tháng 1 2019

\(------huongdan-----\)

\(Taco:\)

\(\left(3n-2n\right)⋮n+1\Leftrightarrow n⋮n+1\Leftrightarrow\left(n+1\right)-n⋮n+1\Leftrightarrow1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{-2;0\right\}\)

\(b,2n-4⋮n+2\Leftrightarrow2n+4-2n+4⋮2n+4\Leftrightarrow8⋮2n+4\)

dễ thấy: 2n+4 chẵn => 2n+4 là ước chẵn của 8

\(\Rightarrow2n+4\in\left\{2;4;8;-2;-4;-8\right\}\Rightarrow2n\in\left\{-2;0;4;-6;-8;-12\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;-3;-4;-6\right\}\)

5 tháng 1 2019

\(2n-4⋮n+2\)

\(\Rightarrow2n+4-8⋮n+2\)

\(\Rightarrow2\left(n+2\right)+8⋮n+2\)

\(\Rightarrow n+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

bn tụ lập bảng ha ~