Tìm x:
`8x^3 -12x^2 +23x-21=0`
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đơn giản hóa
5x + -1y = 13
Giải quyết
5x + -1y = 13
Giải cho biến 'x'.
Di chuyển tất cả các điều khoản có chứa x sang trái, tất cả các điều khoản khác sang phải.
Thêm 'y' vào mỗi bên của phương trình.
5x + -1y + y = 13 + y
Kết hợp như các điều khoản: -1y + y = 0
5x + 0 = 13 + y
5x = 13 + y
Chia mỗi bên cho '5'.
x = 2,6 + 0,2y
Đơn giản hóa x = 2,6 + 0,2y
P/s: Nguồn mạng Oppa :>>
Câu 3 tương tự ((:
+) Tính giá trị của x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)
=> (-2 + \(\sqrt{5}\)) 2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1 = 0
Vậy x2 + 4x - 1 = 0 tại x = -2 + \(\sqrt{5}\)
+) A = 3x3.(x2 + 4x - 1 ) - 5x3 - 23x2 - 7x + 1
= 3x3.(x2 + 4x - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1
= (3x3 - 5x).(x2 + 4x - 1 ) - 3.(x2 + 4x -1) - 2 = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2
Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2
+) A = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2 chia cho (x2 + 4x - 1 ) dư - 2
\(x=-2+\sqrt{5}>0\Rightarrow x+2=\sqrt{5}\)
\(\Rightarrow\left(x+2\right)^2=5\Rightarrow x^2+4x=1\)
Ta có:
\(3x^5+12x^4-8x^3-23x^2-7x+1\)
\(=3x^3\left(x^2+4x\right)-8x^3-23x^2-7x+1\)
\(=-5x^3-23x^2-7x+1=-5x\left(x^2+4x\right)-3x^2-7x+1\)
\(=-3x^2-12x+1=-3\left(x^2+4x\right)+1=-3+1=-2\)
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
\(\Leftrightarrow8x^3-4x^2+16x^2-8x+14x-7=0\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+8x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\4x^2+8x+4+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\4\left(x+1\right)^2+3=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{1}{2}\)
1. \(4x^2-49=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)
===========
2. \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)
Vậy: \(x=6\)
===========
3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)
\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)
1: Ta có: \(4x^2-49=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
2: Ta có: \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\)
hay x=6
Pt bậc 3 này ko giải được trong chương trình phổ thông