Ai giúp mình với ạ:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 3:
Gọi số học sinh là x
Theo đề, ta có: \(x\in BC\left(12;18;21\right)\)
hay x=504

CÂU 1:
\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
CÂU 2:
\(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)
CÂU 3:
\(\dfrac{15x\left(x+5\right)^3}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)^2}{4x}\)
CÂU 4:
\(\dfrac{3xy+x}{9y+3}=\dfrac{x\left(3y+1\right)}{3\left(3y+1\right)}=\dfrac{x}{3}\)
CÂU 5:
\(\dfrac{3xy+3x}{9y+9}=\dfrac{3x\left(y+1\right)}{9\left(y+1\right)}=\dfrac{x}{3}\)
CÂU 6:
\(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)
CÂU 7:
\(\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
CÂU 8:
\(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\\ =\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
CÂU 9:
\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)




Bài 1:
\(a,\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\\ b,\Leftrightarrow m-1>0\Leftrightarrow m>1\\ c,\Leftrightarrow m-1< 0\Leftrightarrow m< 1\)
Bài 2:
\(a,\text{Đồng biến}\Leftrightarrow2m>0\Leftrightarrow m>0\\ \text{Nghịch biến}\Leftrightarrow m-1< 0\Leftrightarrow m< 1\\ b,\Leftrightarrow\left\{{}\begin{matrix}2m=m-1\\m+1\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne2\end{matrix}\right.\Leftrightarrow m=-1\)
a: \(\frac{375\cdot833+822}{377\cdot833-844}\)
\(=\frac{375\cdot833+822}{375\cdot833+2\cdot833-844}=\frac{375\cdot833+822}{375\cdot833+822}\)
=1
b: \(\frac{134^2-670}{133^2-532}=\frac{134\left(134-5\right)}{133\left(133-4\right)}=\frac{134\cdot129}{133\cdot129}=\frac{134}{133}=1+\frac{1}{133}\)
\(\frac{7\cdot\left(13\cdot14-26\cdot28\right)}{26\cdot28-52\cdot56}=\frac{7\cdot13\cdot14\cdot\left(1-2\cdot2\right)}{26\cdot28\left(1-2\cdot2\right)}\)
\(=\frac{7\cdot13\cdot14}{26\cdot28}=7\cdot\frac12\cdot\frac12=\frac74=1+\frac34\)
Ta có: \(\frac{1}{133}=\frac{3}{399}<\frac34\)
=>\(\frac{1}{133}+1<\frac34+1\)
=>\(\frac{134^2-670}{133^2-532}<\frac{7\cdot\left(13\cdot14-26\cdot28\right)}{26\cdot28-52\cdot56}\)
c: \(\frac{2019\cdot2020-1}{2019\cdot2020}=1-\frac{1}{2019\cdot2020}\)
\(\frac{2020\cdot2021-1}{2020\cdot2021}=1-\frac{1}{2020\cdot2021}\)
Ta có: \(2019\cdot2020<2020\cdot2021\)
=>\(\frac{1}{2019\cdot2020}>\frac{1}{2020\cdot2021}\)
=>\(-\frac{1}{2019\cdot2020}<-\frac{1}{2020\cdot2021}\)
=>\(-\frac{1}{2019\cdot2020}+1<-\frac{1}{2020\cdot2021}+1\)
=>\(\frac{2019\cdot2020-1}{2019\cdot2020}<\frac{2020\cdot2021-1}{2020\cdot2021}\)
d: \(31^8<32^8=\left(2^5\right)^8=2^{40}\)
\(128^6=\left(2^7\right)^6=2^{42}>2^{40}\)
=>\(31^8<128^6\)
=>\(\frac{1}{31^8}>\frac{1}{128^6}\)
=>\(\left(\frac{1}{31}\right)^8>\left(\frac{1}{128}\right)^6\)