K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1

A B C D E I H K F O G

a/

Xét \(\Delta ABC\)

AD và BE cắt nhau tại H (gt) 

\(\Rightarrow CH\perp AB\) (trong tam giác 3 đường cao đồng quy)

b/ Gọ F là giao của CH với AB ta có

F và D cùng nhìn BH dưới 1 góc \(90^o\) => F và H nằm trên đường tròn đường kính BH => Tứ giác BFHD là tứ giác nội tiếp)

Ta có

\(sđ\widehat{ABC}=\dfrac{1}{2}sđcungFHD\) (góc nt đường tròn)

\(sđ\widehat{FHD}=\dfrac{1}{2}sđcungFBD\) (góc nt đường tròn)

\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}\left(sđcungFHD+sđcungFBD\right)\)

Mà \(sđcungFHD+sđcungFBD=360^o\)

\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}.360^o=180^o\)

Mà \(\widehat{CHI}+\widehat{FHD}=\widehat{FHC}=180^o\)

\(\Rightarrow\widehat{CHI}=\widehat{ABC}\) (cùng bù với \(\widehat{FHD}\) ) (1)

Xét (O) có 

\(\widehat{ABC}=\widehat{AIC}\) (góc nt đường tròn cùng chắn cung AC) (2)

Từ (1) và (2) \(\Rightarrow\widehat{CHI}=\widehat{AIC}\) => tg CHI cân tại C

c/

Chứng minh tương tự ta cũng có CHK là tg cân tại C

Ta có

\(BE\perp AC\left(gt\right)\Rightarrow AC\perp HK\)

\(\Rightarrow EH=EK\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)

=> H đối xứng K qua AC

d/ Gọi G là giao của CO với (O)

Ta có tg CHK cân tại C (cmt)

=> CK=CH

Mà tg CHI cân tại C (cmt) => CH=CI

=> CK=CI => tg CKI cân tại C (3)

Ta có

\(sđ\widehat{CKI}=\dfrac{1}{2}sđcungCI\) (góc nt (O))

\(sđ\widehat{CIK}=\dfrac{1}{2}sđcungCK\) (góc nt (O))

\(\Rightarrow sđcungCI=sđcungCK\)

Ta có 

sđ cung CIG = sđ cung CKG \(=180^o\)

=> sđ cung CIG - sđ cung CI = sđ cung CKG - sđ cung CK

=> sđ cung GBI = sđ cung GAK

Ta có

\(sđ\widehat{ICG}=\dfrac{1}{2}sđcungGBI\) (góc nt (O))

\(sđ\widehat{KCG}=\dfrac{1}{2}sđcungGAK\) (góc nt (O))

\(\Rightarrow\widehat{ICG}=\widehat{KCG}\) => CG là phân giác của \(\widehat{KCI}\) (4)

Từ (3) và (4) => \(OC\perp KI\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

e/

Ta có E và D cùng nhìn CH dưới 1 góc \(90^o\) => CDHE là tứ giác nội tiếp

\(\Rightarrow\widehat{HDE}=\widehat{ECF}\) (góc nt cùng chắn cung HE) (5)

Ta có F và E cùng nhìn BC dưới 1 góc \(90^o\) => BCEF là tứ giác nt

\(\Rightarrow\widehat{ABK}=\widehat{ECF}\) (góc nt cùng chắn cung EF) (6)

Xét (O) có

\(\widehat{ABK}=\widehat{AIK}\) (góc nt cùng chắn cung AK) (7)

Từ (5) (6) (7) \(\Rightarrow\widehat{HDE}=\widehat{AIK}\) mà 2 góc này ở vị trí đồng vị nên

=> ED//KI 

Mà \(OC\perp KI\left(cmt\right)\)

\(\Rightarrow OC\perp ED\)

 

 

 

 

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

0
9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc đối

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BHCK có 

I là trung điểm của đường chéo BC(gt)

I là trung điểm của đường chéo HK(H đối xứng với K qua I)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay BH//CK

Suy ra: BE//CK

mà BE⊥AC(gt)

nên CK⊥AC

⇔C nằm trên đường tròn đường kính AK

mà C,A cùng thuộc (O)

nên AK là đường kính của (O)

hay A,O,K thẳng hàng(đpcm)