K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

c: Ta có: ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

d: ta có: ΔAMC=ΔDMB

=>AC=DB

Ta có: ΔAMC=ΔDMB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

e: Xét ΔKDM và ΔHAM có

KD=HA

\(\widehat{KDM}=\widehat{HAM}\)

DM=AM

Do đó: ΔKDM=ΔHAM

=>\(\widehat{KMD}=\widehat{HMA}\)

mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>H,M,K thẳng hàng

28 tháng 12 2023

δγΣαγηθλΣϕΩβΔ

28 tháng 12 2023

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

27 tháng 12 2017

Hình vẽ:

A B C M H K

Giải:

a) Xét tam giác AMB và tam giác AMC, có:

\(AB=AC\left(gt\right)\)

\(MB=MC\) (M là trung điểm BC)

AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)

b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)

c) Xét tam giác AHM và tam giác AKM, có:

\(AH=AK\left(gt\right)\)

\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))

AM là cạnh chung

\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)

\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)

d) Ta có: \(AB=AC\left(gt\right)\)

Lại có: \(AH=AK\left(gt\right)\)

Lấy vễ trừ theo vế, ta được:

\(AB-AH=AC-AK\)

\(\Leftrightarrow BH=CK\)

Xét tam giác BHM và tam giác CKM, có:

\(BH=CK\) (Chứng minh trên)

\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)

\(MB=MC\) (M là trung điểm BC)

\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)

27 tháng 12 2017

a.

Xét \(\Delta ABM\)\(\Delta ACM\) có :

\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)

b.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)

c.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)

Xét \(\Delta AHM\)\(\Delta AKM\) có :

\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)

\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)

=> MA là tia phân giác góc HMK

d.

AB=AC

AH=AK

=> BH=CK

AB=AC => tg ABC cân tại A

=> góc B = góc C

Xet \(\Delta BHM\)\(\Delta CKM\) có :

\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)

17 tháng 11 2022

a: Xét ΔDMB và ΔDMC có

MB=MC

DB=DC

DM chung

Do đó: ΔDMB=ΔDMC

b: Xét ΔBAD và ΔCAD có

AB=AC

AD chung

BD=CD

Do đó: ΔBAD=ΔCAD

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Vì DB=DC

nên D nằm trên đường trung trực của BC(2)

Vì MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,D,M thẳng hàng

5 tháng 11 2018

Hình chỉ mang tính chất minh họa A B C D M a,Xét △DMB và △DMC

Có DM chung

BM=MC( M là trung điểm)

BD=CD(gt)

Do đó: △DMB = △DMC(c.c.c)

b, Xét ΔABD và ΔACD

Có: AD chung

AB=AC(gt)

BD=CD(gt)

Do đó:ΔABD = ΔACD(c.c.c)

c, Có AB=AC

=> ΔABC cân tại A

Mà AM là đường trung tuyến(M là trung điểm)✳

=> AM là phân giác \(\widehat{BAC}\)(1)

Lại có \(\widehat{A_1}=\widehat{A_2}\)(ΔABD = ΔACD)

=> AD là phân giác \(\widehat{BAC}\)(2)

Từ (1);(2)=> A,D,M thẳng hàng

Từ ✳=> AM là đường cao của ΔABC

=> AD là đường cao của ΔABC

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN

Xét ΔAMD và ΔAND có

AM=AN

\(\widehat{MAD}=\widehat{NAD}\)

AD chung

Do đó: ΔAMD=ΔAND

=>\(\widehat{AMD}=\widehat{AND}\)

mà \(\widehat{AMD}=90^0\)

nên \(\widehat{AND}=90^0\)

=>DN\(\perp\)AC

c: Xét ΔKCD và ΔKNE có

KC=KN

\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)

KD=KE

Do đó: ΔKCD=ΔKNE

d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

Ta có: ΔKCD=ΔKNE

=>\(\widehat{KCD}=\widehat{KNE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NE//DC

=>NE//BC

ta có: NE//BC

MN//BC

NE,MN có điểm chung là N

Do đó: M,N,E thẳng hàng

29 tháng 1 2017

A B C D I K M 1 2

a)

Xét tam giác AMB và tam giác DMC có:

AM = DM (gt)

AMB = DMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác DMC (c.g.c)

b)

=> ABM = DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // DC

c)

Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:

IMA = KMD (2 góc đối đỉnh)

MA = MD (gt)

=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)

=> IM = KM (2 cạnh tương ứng)

30 tháng 1 2017

Đỗ Nguyễn Như Bình hăm có gì :D

2 tháng 1 2018

a Xét \(\Delta AMC\)\(\Delta DMB\) có :

BM = MC (gt)

MD = MA (gt)

\(\widehat{BMD}=\widehat{CMA}\) (đối đỉnh)

\(\Rightarrow\Delta AMC=\Delta DMB\) (c . g . c)

b Vì \(\Delta AMC=\Delta DMB\)

\(\Rightarrow\) BD = AC

2 tháng 1 2018

Hình bn tự vẽ nha

a) xét 2 tam giác AMC và tam giác DMB có

AM = MD ( GT)

BM= MC (GT)

góc BMD = góc AMC ( đối đỉnh )

==. 2 tam giác = nhau theo trường hợp ( c-g-c )

b) từ phần a ==> AC= BD (2 cạnh tương ứng)

c) ta có M là tung điểm của BC ==> AM là đường trung tuyến của tam giác ABC mà tam giác ABC vuông ==> đường trung tuyến = \(\dfrac{1}{2}\) cạnh huyền ==> BM=AM=MC

===>tam giác BMA và tam giác CMA cân

tam giác BMA cân ==>góc MBA = BAM ( 2 góc đấy trong tam giác cân )

và tam giác CMA cân cũng tương tự ==> góc MAC=ACM

mà BAM +CAM= \(90^o\) ==> BAM=CAM = \(45^o\)

có2 tam giác BMA và CMA cân == góc ABM =ACM = \(45^o\) (1)

có góc DBM=ACM 2 góc tương ứng ở phần a ==>góc ACM= DBM = \(45^o\) (2)

từ (1) và (2) ==> ABM+DBM=\(90^o\)

hay \(AB\perp BD\)

22 tháng 10 2016

Giúp mk đi khocroi

6 tháng 2 2017

xet tm giac AMB VA TAM GIAC NMC CO

AM=MN

CM=MB

M CHUNG

=>TAM GIÁC AMB=TAM GIÁC NM(CGC)

B,XÉT TAM GIÁC AMC VÀ TAM GIÁC NMB CÓ

MC=MB

AM=MN

M CHUG

=> TÂM GIACC AMC= TAM GIÁC NMB (CGC)

6 tháng 2 2017

Còn câu c và d thì sao =-=