xác định hệ số a để đa thức x3-3x+a chia hết cho (x-1)2
các bạn giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x+a⋮\left(x-1\right)^2\\ \Leftrightarrow x^3-3x+a=\left(x-1\right)^2\cdot A\left(x\right)\)
Thay \(x=1\), ta được:
\(1^3-3\cdot1+a=0\\ \Leftrightarrow a=2\)
Vậy \(a=2\) thì thỏa mãn đề
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
Do x = -1 là nghiệm của phương trình
⇒ a - b - 1 - 2 = 0
⇒ a - b = 3
Tương tự ta có a + b = 1
Vậy a = 2 ; b = -1
hệ số là x đó bạn ,chắc chắn đúng luôn
bạn chỉ mình cách giải với