K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

1.

\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)

Mặt khác:

\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)

\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)

14 tháng 8 2021

2.

Đề đúng chưa.

Thay n=7 vào thì biểu thức bằng 945 không chia hết cho 384.

18 tháng 7 2017

 1+1/22+1/32+...+1/100​2​ <1+1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<2 (dpcm)

k cho mk nha : thắc mắc liên hệ mk giúp cho.

18 tháng 7 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\) 

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ................

         \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2-\frac{1}{100}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\) (đpcm)

28 tháng 7 2018

đề bài giống này đúng ko bạn nếu đúng thì làm theo nha nhớ k cho mình

E= \(1^3+2^3+3^3+...+99^3+100^3\)

=(1-1)1(1+1)+1+(2-1)2(2-1)+2+...+)(99-1)99(99+1)+99+(100-1) 100(100+1)+100

= 1+2+1.2.3+3+2.3.4+...+100+99.100+101

= (1+2+3+..+100) +(1.2.3+2.3.4+...+99.100.101)

= 5050+25497450

=25502500

30 tháng 4 2017

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4E< 3\)

\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)

30 tháng 4 2017

Bài 1:

Ta có: \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^5.120+...+3^{96}.120\)

\(=120.\left(1+3^5+.....+3^{96}\right)\)

\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)

20 tháng 3 2016

nhanh giúp mình

11 tháng 8 2015

  A=1+4+42+...+499

4A=4+42+43+...+4100

4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)

 3A=4100-1

Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)

nhớ tích đúng nhe!!

 

11 tháng 8 2015

A=1+4+42+...+499

=>4A=4+42+43+...+4100

=>4A-A=(4+42+43+...+4100)-(1+4+42+...+499)=4100-1<4100

=>3A<4100

=>3A<B

=>A<B/3