cho a,b>0 chứng minh 1/(1+a)2 + 1/(1+b)2 ≥ 1/(1+ab)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
Đọc tiếp...
\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{ab}\ge4\)
Do đó:
\(ab+\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge ab+\dfrac{2}{ab}=\left(ab+\dfrac{1}{16ab}\right)+\dfrac{31}{16}.\dfrac{1}{ab}\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{31}{16}.4=\dfrac{33}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
\(\dfrac{a}{a^4+b^2}+\dfrac{b}{a^2+b^4}\le\dfrac{a}{2\sqrt{a^4b^2}}+\dfrac{b}{2\sqrt{a^2b^4}}=\dfrac{a}{2a^2b}+\dfrac{b}{2ab^2}=\dfrac{1}{ab}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
Áp dụng BĐT Bunhiacopxki:
\(\left(1+ab\right)\left(1+\dfrac{a}{b}\right)\ge\left(1+a\right)^2\)
\(\Rightarrow\dfrac{1}{\left(1+a\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}=\dfrac{b}{\left(a+b\right)\left(1+ab\right)}\)
Tương tự:
\(\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{a}{\left(a+b\right)\left(1+ab\right)}\)
Cộng vế:
\(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{a+b}{\left(a+b\right)\left(1+ab\right)}=\dfrac{1}{1+ab}\)
Dấu "=" xảy ra khi \(a=b=1\)