Tìm x biết :
\(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\dfrac{-1}{4}-\dfrac{3}{4}:x=-\dfrac{11}{36}\)
\(-\dfrac{3}{4}:x=\left(-\dfrac{1}{4}\right)-\left(-\dfrac{11}{36}\right)\)
\(-\dfrac{3}{4}:x=\dfrac{1}{18}\)
\(x=\left(-\dfrac{3}{4}\right):\left(\dfrac{1}{18}\right)\)
\(x=\dfrac{27}{2}\)
2, \(\dfrac{3}{4}x-\dfrac{1}{2}=\dfrac{3}{7}\)
\(\dfrac{3}{4}x=\dfrac{3}{7}+\dfrac{1}{2}\)
\(\dfrac{3}{4}x=\dfrac{13}{14}\)
\(x=\dfrac{13}{14}:\dfrac{3}{4}\)
\(x=\dfrac{26}{21}\)
\(x+\dfrac{1}{2}=\dfrac{33}{4}\\ \Rightarrow x=\dfrac{33}{4}-\dfrac{1}{2}\\ \Rightarrow x=\dfrac{31}{4}\\ \dfrac{5}{6}-x=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{5}{6}-\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{2}\\ x+\dfrac{4}{5}=\dfrac{-2}{3}\\ \Rightarrow x=\dfrac{-2}{3}-\dfrac{4}{5}\\ \Rightarrow x=\dfrac{-22}{15}\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
\(x=\dfrac{6}{5}-\dfrac{2}{3}\)
\(x=\dfrac{18}{15}-\dfrac{10}{15}\)
\(x=\dfrac{8}{15}\)
Vậy, `x =`\(\dfrac{8}{15}\)
`b)`
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{4}{17}\)
Vậy, \(x=\dfrac{4}{17}\)
`c)`
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{34}{7}\)
Vậy, `x = `\(\dfrac{34}{7}\)
a) \(\dfrac{3}{2}x\dfrac{4}{5}-x=\dfrac{2}{3}\Rightarrow\dfrac{6}{5}-x=\dfrac{2}{3}\Rightarrow x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18}{15}-\dfrac{10}{15}=\dfrac{8}{15}\)
b) \(x.3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}:\dfrac{17}{4}\Rightarrow\dfrac{10}{3}.x=\dfrac{10}{3}.\dfrac{4}{17}\Rightarrow x=\dfrac{10}{3}.\dfrac{4}{17}:\dfrac{10}{3}=\dfrac{10}{3}.\dfrac{4}{17}.\dfrac{3}{10}=\dfrac{4}{17}\)
c) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\dfrac{1}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{11}{3}-\dfrac{5}{2}\Rightarrow\dfrac{17}{3}:x=\dfrac{22}{6}-\dfrac{15}{6}\Rightarrow\dfrac{17}{3}:x=\dfrac{7}{6}\Rightarrow x=\dfrac{17}{3}:\dfrac{7}{6}=\dfrac{17}{3}.\dfrac{7}{6}=\dfrac{119}{18}\)
a: \(\Leftrightarrow\left(x+1\right)^2=3^2=9\)
=>x+1=3 hoặc x+1=-3
=>x=2 hoặc x=-4
b: \(\Leftrightarrow\left(x-1\right)^2=16\)
=>x-1=4 hoặc x-1=-4
=>x=5 hoặc x=-3
1: =>x=3/5-1/5=2/5
b: =>x/3=5/8+1/8=3/4
=>x=9/4
3: =>10/3x=3+1/4+6+3/4=10
=>x=10:10/3=3
\(a,-\dfrac{3}{5}-x=-0,75\\ -\dfrac{3}{5}-x=-\dfrac{3}{4}\\ x=-\dfrac{3}{5}-\left(-\dfrac{3}{4}\right)\\ x=-\dfrac{3}{5}+\dfrac{3}{4}=\dfrac{3}{20}\\ ---\\ b,1\dfrac{4}{5}=-0,15-x\\ \dfrac{9}{5}=-\dfrac{3}{20}-x\\ x=-\dfrac{3}{20}-\dfrac{9}{5}\\ x=-\dfrac{3}{20}-\dfrac{36}{20}\\ x=-\dfrac{39}{20}\\ ----\\ c,2\dfrac{1}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}-\left(-\dfrac{4}{7}\right)\\ \dfrac{5}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}+\dfrac{4}{7}\\ \dfrac{33}{10}-x=\dfrac{26}{21}\\ x=\dfrac{33}{10}-\dfrac{26}{21}\\ x=\dfrac{433}{210}\)
\(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\left(x\ne1\right)\)
\(\Rightarrow\left(x-1\right)\cdot\left(x-1\right)=\left(-4\right)\cdot\left(-4\right)\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
TH1: \(x-1=4\Rightarrow x=4+1=5\left(tm\right)\)
TH2: \(x-1=-4\Rightarrow x=-4+1=-3\left(tm\right)\)
\(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\left(dk:x\ne1\right)\)
\(\Rightarrow\left(x-1\right)\cdot\left(x-1\right)=-4\cdot\left(-4\right)\)
\(\Rightarrow\left(x-1\right)^2=\left(\pm4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\left(tm\right)\)