Cho dãy số:1;3;7;15;31.... Số hạng thứ 8 của dãy là số nào.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)
\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)
2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)
\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)
Ta có:1x2+1=3
3x2+1=7
7x2+1=15
15x2+1=31
=>Ta có qui luật X nhân 2 cộng 1
=> 1;3;7;15;31;63;1323;2647.
=> Vậy ta đếm dãy số từ 1 đến 31 đã có 5 số
Số hạng thứ tám của dãy là 2647
Ta có:
\(1\times2+1=3\)
\(3\times2+1=7\)
\(7\times2+1=15\)
\(15\times2+1=31\)
\(31\times2+1=63\)
⇒ Quy luật để tìm số của dãy số trên là: Số đằng trước số cần tìm\(\times2+1\)
⇒ Vậy số \(63\) trong dãy số trên là số hạng thứ \(6\), vậy:
\(63\times2+1=127\)(số hạng thứ 7)
\(127\times2+1=255\)(số hạng thứ 8)
Vì:
Dãy số \(1;3;7;15;31;63;127;255\) có số \(255\) là số hạng thứ 8.
Nên số hạng thứ \(8\) của dãy số trên là: \(255\)