Tìm các cặp số nguyên x,y biết: 2x2y-x2-2y-2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2y - x2 -2y - 2 = 0
=>2x2y-x2-2y+1 = 3
=>(2x2y-x2)-(2y-1)=3
=>x2(2y-1)-(2y-1)=3
=>(x2-1)(2y-1)=3
=>x2-1 và 2y-1 thuộc Ư(3)={3;1;-1;-3}
Xét x2-1=3 =>x2=4 =>x=±2 =>2y-1=1 =>y=1
Xét x2-1=1 =>x2=2 (Loại vì x,y nguyên)
Xét x2-1=-1 =>x2=0 =>x=0 =>2y-1=-3 =>y=-1
Xét x2-1=-3 =>x2=-2 (Loại vì bình phương 1 số luôn \(\ge\)0>-2)
Vậy với x=±2 thì y=1 với x=0 thì y=-1
⇔2x2−x+1=xy+2y⇔2x2−x+1=xy+2y
⇔2x2−x+1=y(x+2)⇔2x2−x+1=y(x+2)
⇔y=2x2−x+1x+2=2x−5+11x+2⇔y=2x2−x+1x+2=2x−5+11x+2
Do y nguyên ⇒11x+2⇒11x+2 nguyên ⇒x+2=Ư(11)⇒x+2=Ư(11)
Mà x nguyên dương ⇒x+2≥3⇒x+2=11⇒x=9⇒x+2≥3⇒x+2=11⇒x=9
⇒y=14⇒y=14
Vậy (x;y)=(9;14)
Ta có
\(xy+2y-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-\left(3x-6\right)=2\)
\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=2\)
\(\Leftrightarrow\left(x+2\right)\left(y+3\right)=2\)
(+) với \(\begin{cases}x+2=1\\y+3=2\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=-1\end{cases}\)
(+) với \(\begin{cases}x+2=-1\\y+3=-2\end{cases}\)\(\Rightarrow\begin{cases}x=-3\\y=-5\end{cases}\)
(+) với \(\begin{cases}x+2=2\\y+3=1\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=-2\end{cases}\)
(+) với \(\begin{cases}x+2=-2\\y+3=-1\end{cases}\)\(\Rightarrow\begin{cases}x=-4\\y=-4\end{cases}\)Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-3;-5\right);\left(0;-2\right);\left(-4;-4\right)\right\}\)\(xy+2y-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=-2\)
\(\Leftrightarrow\left(x+2\right)\left(3-y\right)=2\)
Tới đây phân tích 2 = 1.2 = ...
Ghép cặp và tính.
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
Ta có :
\(2x^2y-x^2-2y-2=0\)
\(\Leftrightarrow\)\(2x^2y-x^2-2y+1-3=0\)
\(\Leftrightarrow\)\(x^2\left(2y-1\right)-\left(2y-1\right)=3\)
\(\Leftrightarrow\)\(\left(x^2-1\right)\left(2y-1\right)=3\)
Đến đây xét các trường hợp ra nhá :')