tìm tất cả giá trị của m để `x^2 -4(m-1)x+2m-1=0` có 2 nghiệm trái dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
Ta có: \(-x^2+mx+4-m^2=0\)
\(\Leftrightarrow x^2-mx+m^2-4=0\)
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)
Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)
Để PT (1) thì PT(2) vô nghiệm:
Để PT(2) vô nghiệm thì: Δ=(1−2m)2−4.(m2−1)<0⇔1−4m+4m2−4m2+4<0Δ=(1−2m)2−4.(m2−1)<0⇔1−4m+4m2−4m2+4<0
<=>5-4m<0
<=>m>5/4
Để phương trình có 2 nghiệm trái dấu thì \(a\cdot c< 0\)
=>1(2m-1)<0
=>2m-1<0
=>2m<1
=>\(m< \dfrac{1}{2}\)